98%
921
2 minutes
20
Inverse vulcanization provides dynamic and responsive materials made from elemental sulfur and unsaturated cross-linkers. These polymers have been used in a variety of applications such as energy storage, infrared optics, repairable materials, environmental remediation, and precision fertilizers. In spite of these advances, there is a need for methods to recycle and reprocess these polymers. In this study, polymers prepared by inverse vulcanization are shown to undergo reactive compression molding. In this process, the reactive interfaces of sulfur polymers are brought into contact by mechanical compression. Upon heating these molds at relatively low temperatures (≈100 °C), chemical bonding occurs at the polymer interfaces by S-S metathesis. This method of processing is distinct from previous studies on inverse vulcanization because the polymers examined in this study do not form a liquid phase when heated. Neither compression nor heating alone was sufficient to mold these polymers into new architectures, so this is a new concept in the manipulation of sulfur polymers. Additionally, high-level ab initio calculations revealed that the weakest S-S bond in organic polysulfides decreases linearly in strength from a sulfur rank of 2 to 4, but then remains constant at about 100 kJ mol for higher sulfur rank. This is critical information in engineering these polymers for S-S metathesis. Guided by this insight, polymer repair, recycling, and repurposing into new composites was demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202001841 | DOI Listing |
J Chem Inf Model
September 2025
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.
The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Zibo Engineering Research Center for Bio-based New Materials, Zibo 255000, China. Electronic address:
Tungsten disulfide (WS), a two-dimensional adsorbent material, has garnered great attention in removing lead ions (Pb) from water due to their extensive exposed adsorption sites. However, WS nanosheets inevitably agglomerated and stacked during the preparation and adsorption process, leading to reduced adsorption efficiency. Current method of enhancing WS dispersion is mainly blending with synthetic polymers, but these synthetic polymers themselves do not possess adsorption properties, resulting adsorption effect enhancement poorly.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.
View Article and Find Full Text PDFLuminescence
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing, China.
A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Lithium‑sulfur batteries (LSBs) are promising alternatives to lithium-ion batteries due to their high energy density and low cost. However, issues like the lithium polysulfide (LiPSs) shuttle effect, lithium dendrite growth, and flammable electrolytes hinder commercialization. In this study, we have developed a metal-based catalyst, bismuth oxychloride (BiOCl) nanoflowers coated with conductive polypyrrole (Bi@Ppy), via hydrothermal synthesis.
View Article and Find Full Text PDF