98%
921
2 minutes
20
Studies in the Amazon are being intensified to evaluate the alterations in the microbial communities of soils and sediments in the face of increasing deforestation and land-use changes in the region. However, since these environments present highly heterogeneous physicochemical properties, including contaminants that hinder nucleic acids isolation and downstream techniques, the development of best molecular practices is crucial. This work aimed to optimize standard protocols for DNA extraction and gene quantification by quantitative real-time PCR (qPCR) based on natural and anthropogenic soils and sediments (primary forest, pasture, Amazonian Dark Earth, and várzea, a seasonally flooded area) of the Eastern Amazon. Our modified extraction protocol increased the fluorometric DNA concentration by 48%, reaching twice the original amount for most of the pasture and várzea samples, and the 260/280 purity ratio by 15% to values between 1.8 to 2.0, considered ideal for DNA. The addition of bovine serum albumin in the qPCR reaction improved the quantification of the 16S rRNA genes of and and its precision among technical replicates, as well as allowed their detection in previously non-amplifiable samples. It is concluded that the changes made in the protocols improved the parameters of the DNA samples and their amplification, thus increasing the reliability of microbial communities' analysis and its ecological interpretations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226647 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e03830 | DOI Listing |
Rapid Commun Mass Spectrom
December 2025
Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
Mar Pollut Bull
September 2025
Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India. Electronic address:
This study presents the first attempt on plant biomonitoring of the polycyclic aromatic hydrocarbons (PAHs) pollution in East Kolkata Wetland (EKW), a Ramsar site in India, using Alternanthera ficoidea (L.). A polluted site, Captain Bheri (CB) and a control area, Kansabati River Basin (KRB) are chosen to compare the severity of the PAHs pollution of the wetland by examining wetland sediment and wetland plant parts (leaf, root, stem, rhizobium).
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.
View Article and Find Full Text PDFChemosphere
September 2025
Laboratório de Imuno-histoquímica e Biologia Do Desenvolvimento, Instituto de, Ciências Biológicas, Universidade Federal Do Pará, 66075-110, Belém, Pará, Brazil. Electronic address:
High natural concentrations of metals in Amazonian soils, combined with rainfall, increase metal availability in rivers and streams. This study objective was the environmental quality of two microbasins using integrated biomarkers in Leporinus friderici. Water, sediment, and fish samples were collected during the rainy and dry seasons from the Parariquara and Potiritá river microbasins, located near an area of mining in Paragominas, Pará, Brazil.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Arsenic (As) represents the most typical associated element in gold mines, with As pollution frequently observed in regions of intensive gold mining activities, especially in Zhaoyuan City, renowned as the "Gold Capital" of China. In this study, schwertmannite (Sch), an iron oxyhydroxysulfate mineral with unique channel structure renowned for its As adsorption and stabilization capabilities in aqueous and soil systems, was synthesized and applied to evaluate its efficacy in stabilizing As for gold mining-impacted sediments. Besides, the functional mechanisms of Sch in mediating the redistribution and persistent immobilization of As in the sediments of Jiehe River in Zhaoyuan city were also explored.
View Article and Find Full Text PDF