98%
921
2 minutes
20
Background And Aims: Chronic alcohol consumption is accompanied by intestinal inflammation. However, little is known about how alterations to the intestinal immune system and sphingolipids contribute to the pathogenesis of alcohol-associated liver disease (ALD).
Approach And Results: We used wild-type mice, retinoid-related orphan receptor gamma t (RORγt)-deficient mice, sphingosine kinase-deficient mice, and local gut anti-inflammatory, 5-aminosalicyclic acid-treated mice in a chronic-binge ethanol feeding model. Targeted lipidomics assessed the sphingolipids in gut and liver samples. Gut immune cell populations, the amounts of sphingolipids, and the level of liver injury were examined. Alcohol intake induces a pro-inflammatory shift in immune cell populations in the gut, including an increase in Th17 cells. Using RORγt-deficient mice, we found that Th17 cells are required for alcohol-associated gut inflammation and the development of ALD. Treatment with 5-aminosalicyclic acid decreases alcohol-induced liver injury and reverses gut inflammation by the suppression of CD4 /RORγt /interleukin-17A cells. Increased Th17 cells were due to up-regulation of sphingosine kinase 1 activity and RORγt activation. We found that S1P/S1PR1 signaling is required for the development of Th17 cell-mediated ALD. Importantly, in vivo intervention blocking of S1P/S1PR1 signaling markedly attenuated alcohol-induced liver inflammation, steatosis, and damage.
Conclusions: Gut inflammation is a functional alteration of immune cells in ALD. Reducing gut Th17 cells leads to reduced liver damage. S1P signaling was crucial in the pathogenesis of ALD in a Th17 cell-dependent manner. Furthermore, our findings suggest that compounds that reduce gut inflammation locally may represent a unique targeted approach in the treatment of ALD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009334 | PMC |
http://dx.doi.org/10.1002/hep.31321 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China.
Objectives: To investigate the therapeutic mechanism of 2,6-dimethoxy-1,4-benzoquinone (DMQ) for alleviating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice.
Methods: Eighteen male C57BL/6J mice were equally randomized into control group, DSS group and DMQ treatment group. In DSS and DMQ groups, the mice were treated with DSS in drinking water to induce UC, and received intraperitoneal injections of sterile PBS or DMQ (20 mg/kg) during modeling.
Parasite Immunol
September 2025
Department of Zoology, Panjab University, Chandigarh, India.
Leishmania parasite adeptly evades the host's immune defences by infiltrating macrophages, exploiting apoptotic processes for further dissemination. Among the host's strategies to counter parasitic propagation, the pivotal role of B-cells, specifically B regulatory (Breg) cells, emerges. Recent evidence from in vitro and in vivo studies has thrust Breg cells into the spotlight, attributed to their IL-10 secretion and antigen presentation.
View Article and Find Full Text PDFClin Exp Immunol
September 2025
Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
Introduction: Conventional dendritic cells (cDCs) in the gut express the vitamin A (VA)-converting enzyme retinal dehydrogenase 2 (RALDH2) and produce significant amounts of retinoic acid (RA). RA derived from gut cDCs contributes to the generation of tolerogenic responses by promoting Treg differentiation while inhibiting Th1 and Th17 cell differentiation. In this study, we investigated whether similar RA-mediated immunoregulatory mechanisms operate in the pancreas using an experimental autoimmune pancreatitis (AIP) model.
View Article and Find Full Text PDFInt Dent J
September 2025
Dept. of Oral Implantology, the Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China. Electronic address:
Objectives: Demineralised dentin matrix (DDM) is an effective scaffold material for bone tissue engineering. However, the osteoimmunological mechanism of DDM remains unexplored. Th17/Treg cell balance has been noticed as a crucial factor in bone regeneration.
View Article and Find Full Text PDFArthritis Rheumatol
July 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
Objective: Interleukin-17-producing CD4 Th17 cells contribute to the pathogenesis of autoimmune diseases, including crescentic glomerulonephritis. Although ADAM9 has been reported to contribute to organ inflammation, the mechanism remains poorly understood. The goal of the current study was to investigate how ADAM9 alters T cell metabolism to promote the generation of Th17 cell differentiation.
View Article and Find Full Text PDF