Iron-Catalyzed Oxidative Coupling of Indoline-2-ones with Aminobenzamides via Dual C-H Functionalization.

Org Lett

National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe an unprecedented dual C-H functionalization of indolin-2-one via an oxidative C(sp)-H/N-H/X-H (X = N, C, S) cross-coupling protocol, which is catalyzed by a simple iron salt under mild and ligand-free conditions and employs air (molecular oxygen) as the terminal oxidant. This method is readily applicable for the construction of tetrasubstituted carbon centers from methylenes and provides a wide variety of spiro N-heterocyclic oxindoles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.0c01066DOI Listing

Publication Analysis

Top Keywords

dual c-h
8
c-h functionalization
8
iron-catalyzed oxidative
4
oxidative coupling
4
coupling indoline-2-ones
4
indoline-2-ones aminobenzamides
4
aminobenzamides dual
4
functionalization describe
4
describe unprecedented
4
unprecedented dual
4

Similar Publications

Herein, we describe a versatile and region-selective 2,3-aminotrideuteromethylthiolation of -alkyl indoles with alkylamines and CDSSONa using NaIO as reaction mediator. This strategy is exemplified in the preparation of 33 SCD-labeled indoles, late-stage indolyltrideuteromethylthiolation of drug intermediates, and product derivatization. Initial mechanistic investigations have verified that NaIO could be converted to I by CDSSONa and that alkylamine contributes to the activation of the Bunte salts.

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF

Recent advances in the construction of quaternary pseudoanomeric centers in ,-glycosides: from zaragozic acids to remdesivir.

Org Biomol Chem

September 2025

Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.

,-glycosides--glycosides characterized by two carbon substituents at the pseudo-anomeric position-constitute a structurally distinctive class of glycomimetics with growing relevance in natural products and drug discovery. These motifs appear in diverse bioactive compounds such as maitotoxin, nogalamycins, zaragozic acids and remdesivir, displaying antimicrobial, anti-inflammatory, and anticancer properties. The unique architectures of ,-glycosides expand the glycochemical space and hold promise for therapeutic development.

View Article and Find Full Text PDF

BN-fused aromatic compounds have garnered significant attention due to their unique electronic structures and exceptional photophysical properties, positioning them as highly promising candidates for applications in organic optoelectronics. However, the regioselective synthesis of BN isomers remains a formidable challenge, primarily stemming from the difficulty in precisely controlling reaction sites, limiting structural diversity and property tunability. Herein, we propose a regioselective synthetic strategy that employs 2,1-BN-naphthalene derivatives, wherein selective activation of N-H and C-H bonds is achieved in conjunction with -halogenated phenylboronic acids.

View Article and Find Full Text PDF

Voxel-level Radiomics and Deep Learning Based on MRI for Predicting Microsatellite Instability in Endometrial Carcinoma: A Two-center Study.

Acad Radiol

September 2025

Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing 100142, China (P.S., S.L., N.X.). Electronic address:

Rationale And Objectives: To develop and validate a non-invasive deep learning model that integrates voxel-level radiomics with multi-sequence MRI to predict microsatellite instability (MSI) status in patients with endometrial carcinoma (EC).

Methods: This two-center retrospective study included 375 patients with pathologically confirmed EC from two medical centers. Patients underwent preoperative multiparametric MRI (T2WI, DWI, CE-T1WI), and MSI status was determined by immunohistochemistry.

View Article and Find Full Text PDF