98%
921
2 minutes
20
Nitrogen-fixing root nodulation in legumes challenged with nitrogen-limiting conditions requires infection of the root hairs by soil symbiotic bacteria, collectively referred to as rhizobia, and the initiation of cell divisions in the root cortex. Cytokinin hormones are critical for early nodulation to coordinate root nodule organogenesis and the progression of bacterial infections. Cytokinin signaling involves regulation of the expression of cytokinin primary response genes by type-B response regulator (RRB) transcription factors. RNA interference or mutation of , the RRB-encoding gene most strongly expressed in roots and nodules, significantly decreased the number of nodules formed, indicating a function of this RRB in nodulation initiation. Fewer infection events were also observed in mutant roots associated with a reduced Nod factor induction of the () infection marker, and of the cytokinin-regulated ( ) gene. Rhizobial infections correlate with an expansion of the nuclear area, suggesting the activation of endoreduplication cycles linked to the cytokinin-regulated ( ) gene. Although no significant difference in nucleus size and endoreduplication were detected in rhizobia-infected mutant roots, expression of the endoreduplication marker was reduced. As the expression pattern overlaps with those of and in roots and nodule primordia, chromatin immunoprecipitation-quantitative PCR and protoplast trans-activation assays were used to show that MtRRB3 can interact with and trans-activate and promoters. Overall, we highlight that the MtRRB3 cytokinin signaling transcription factor coordinates the expression of key early nodulation genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333713 | PMC |
http://dx.doi.org/10.1104/pp.19.01383 | DOI Listing |
J Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou, 350002, People's Republic of China.
GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
N, as plants' most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China.
Camellia chekiangoleosa is a significant oil-bearing tree species, known for its high oleic acid content and shorter reproductive cycle compared to traditional oil-tea plants. However, there are few studies on the molecular mechanism and compatibility of the interaction between oil-Camellia scion and rootstock, which poses certain challenges to the cultivation and promotion of oil-Camellia. This study systematically evaluates the effects of hetero-grafting Camellia chekiangoleosa scions onto divergent rootstocks (Camellia chekiangoleosa, Camellia oleifera, and Camellia yuhsienensis).
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Department of Chemistry, College of Science, Northern Border university, Arar, Saudi Arabia.
Plants' immobility renders them highly vulnerable to heat stress, which disrupts water relations, photosynthesis, respiration, and cellular homeostasis, ultimately reducing growth and yield. To survive, plants deploy a multifaceted heat stress response (HSR) that integrates calcium signaling, molecular chaperones, antioxidant enzymes, and phytohormonal networks. This review synthesizes recent advances in understanding the molecular crosstalk between phytohormones and protein synthesis during plant heat stress responses, with a particular focus on two key HSR modules: protein synthesis pathways, especially heat shock proteins (HSPs), and phytohormone signaling networks involving abscisic acid, cytokinins, ethylene, salicylic acid, and jasmonic acid.
View Article and Find Full Text PDF