Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spontaneous necrosis is a defining feature of glioblastomas (GBMs), the most malignant glioma. Despite its strong correlations with poor prognosis, it remains unclear whether necrosis could be a possible cause or mere consequence of glioma progression. Here we isolated a particular fraction of necrotic products spontaneously arising from glioma cells, morphologically and biochemically defined as autoschizis-like products (ALPs). When administered to granulocyte macrophage colony-stimulating factor (GM-CSF)-primed bone marrow-derived macrophage/dendritic cells (Mφ/DCs), ALPs were found to be specifically engulfed by Mφs expressing a tumor-associated macrophage (TAM) marker CD204. ALPs from glioma stem cells (GSCs) had higher activity for the TAM development than those from non-GSCs. Of note, expression of the Il12b gene encoding a common subunit of IL-12/23 was upregulated in ALPs-educated Mφs. Furthermore, IL-12 protein evidently enhanced the sphere-forming activity of GBM patient-derived cells, although interestingly IL-12 is generally recognized as an antitumoral M1-Mφ marker. Finally, in silico analysis of The Cancer Genome Atlas (TCGA) transcriptome data of primary and recurrent GBMs revealed that higher expression of these IL-12 family genes was well correlated with more infiltration of M1-type TAMs and closely associated with poorer prognosis in recurrent GBMs. Our results highlight a role of necrosis in GSC-driven self-beneficial niche construction and glioma progression, providing important clues for developing new therapeutic strategies against gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.3193DOI Listing

Publication Analysis

Top Keywords

glioma stem
8
autoschizis-like products
8
glioma progression
8
recurrent gbms
8
glioma
6
stem cell
4
cell gsc-derived
4
gsc-derived autoschizis-like
4
products confer
4
confer gsc
4

Similar Publications

The prognosis of glioblastoma multiforme (GBM) remains dismal, despite standard treatment regimens. A key challenge in treating GBM is the persistence of glioma stem cells (GSCs) within the perivascular niche (PVN) - a protective tumor microenvironment (TME) that is often associated with inadequate drug penetration. Current preclinical models do not capture complexity of the human TME, particularly the vasculature and niche-specific interactions that drive GBM progression.

View Article and Find Full Text PDF

One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.

View Article and Find Full Text PDF

Paraspeckle protein NONO regulates active chromatin by allosterically stimulating NSD1.

Cell Rep

September 2025

Virginia Tech Fralin Biomedical Research Institute Cancer Research Center DC, Children's National Research & Innovation Campus, Washington, DC, USA; Department of Biomedical Sciences and Pathobiology (DBSP), Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Center

Nuclear receptor binding set domain protein 1 (NSD1) is a key histone methyltransferase that catalyzes di-methylation of lysine 36 of histone H3 (H3K36me2), essential for active chromatin domains. While the loss of NSD1 activity halts embryonic development and its aberrant gain drives oncogenesis in leukemia and glioma, the regulatory mechanisms remain poorly understood. Here, we uncover that NSD1 requires allosteric activation through the aromatic pocket of its Pro-Trp-Trp-Pro 2 (PWWP2) domain.

View Article and Find Full Text PDF

Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.

View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the control GADPH western blots shown in Fig. 5D were strikingly simillar to three lanes in the GAPDH panel shown in Fig. 4D, even though the experimental conditions reported in these figure parts were different, suggesting that one of these figures may have been assembled incorrectly.

View Article and Find Full Text PDF