Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to compare the microbial community structure and diversity in powdery mildew-infected and noninfected strawberry plant rhizosphere soils in the greenhouse based on variations in the 16S rRNA gene V3-V4 and fungal ITS2 regions by Illumina amplicon sequencing. Powdery mildew infection reduced the number of operational taxonomic units (OTUs) and prokaryotic and fungal community richness/diversity indexes in the rhizosphere soils compared with those in healthy plant soils. Furthermore, 3543 prokaryotic and 581 fungal OTUs were obtained at the 97% similarity level. Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the dominant bacterial phyla; Woesearchaeota_DHVEG-6, Bathyarchaeota, and Thaumarchaeota were the dominant archaea; and Ascomycota, Basidiomycota, unclassified_fungi, and Zygomycota were the dominant fungal phyla. Their proportions differed significantly among samples. Wolbachia, Devosia, Pseudolabrys, Streptomyces, and Rhizomicrobium were the most abundant bacterial genera; their proportions differed significantly among samples. Most Pseudomonas, Streptomyces, and 'norank' group members might be potential antagonistic microorganisms of powdery mildew pathogens, and Wolbachia and Rickettsia might be pathogen-transmitting vectors. Microascus, Clitopilus, and Ciliophora were the dominant fungi, and their community structures and abundances significantly differed among samples. Microascus, Talaromyces, Zopfiella, and Cryptococcus were relatively more abundant in the powdery mildew-infected strawberry plant rhizosphere soils. Fusarium, Trichoderma, Clitopilus, and 'unclassified' group members may be potential antagonistic populations. The results suggested that powdery mildew-infected strawberry fruits and plants cannot be consumed. This report is the first study to illustrate differences in the rhizosphere soil prokaryotic and fungal communities between powdery mildew-infected and noninfected strawberry plants in a greenhouse.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-020-01948-xDOI Listing

Publication Analysis

Top Keywords

powdery mildew-infected
20
mildew-infected noninfected
12
noninfected strawberry
12
rhizosphere soils
12
differed samples
12
rhizosphere soil
8
microbial community
8
community structure
8
structure diversity
8
diversity powdery
8

Similar Publications

Phytoalexins are antimicrobial compounds of diverse chemical classes whose production is triggered in plants in response to pathogen infection. This study demonstrated that spraying with a celery flavonoid-rich extract (CFRE) or a spinach flavonoid-rich extract (SFRE) enhanced the production of phytoalexins in cucumber leaves artificially infected with powdery mildew incited by . High-performance liquid chromatographic (HPLC) analysis revealed a noticeable increase in the content of phenolic acids, including caffeic acid, ellagic acid, ferulic acid, gallic acid, -coumaric acid, and syringic acid, as well as the flavonoid rutin in both non-inoculated and inoculated leaves of cucumber seedlings treated with CFRE and SFRE, compared to healthy untreated leaves used as a control.

View Article and Find Full Text PDF

Erysiphe corylacearum has recently been reported in northern Italy (Piedmont) and other European countries as the causal agent of a new emerging powdery mildew on hazelnut. This disease is much more dangerous than the common hazelnut powdery mildew caused by Phyllactinia guttata as it significantly reduces yield and quality of hazelnuts. This study aimed to perform morphological and molecular characterization of the fungal isolates from powdery mildew-infected plants in the Piedmont Italian region.

View Article and Find Full Text PDF

Cadmium inhibits powdery mildew colonization and reconstructs microbial community in leaves of the hyperaccumulator plant Sedum alfredii.

Ecotoxicol Environ Saf

July 2023

MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Uni

Understanding the influence of the heavy metal cadmium (Cd) on the phyllosphere microbiome of hyperaccumulator plants is crucial for enhancing phytoremediation. The characteristics of the phyllosphere of Sedum alfredii Hance, a hyperaccumulator plant, were investigated using 16S rRNA and internal transcribed spacer amplicon sequencing of powdery mildew-infected leaves treated or untreated with Cd. The results showed that the colonization of powdery mildew caused severe chlorosis and necrosis in S.

View Article and Find Full Text PDF

Modern agricultural practices rely on synthetic fungicides to control plant disease, but the application of these fungicides has raised concerns regarding human and environmental health for many years. As a substitute, environmentally friendly fungicides have been increasingly introduced as alternatives to synthetic fungicides. However, the impact of these environmentally friendly fungicides on plant microbiomes has received limited attention.

View Article and Find Full Text PDF

Morphology and surface characteristics of the anamorphic stage of powdery mildew Erysiphe australiana on crape myrtle leaves.

Micron

April 2021

School of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Republic of Korea; Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:

The morphology and surface characteristics of the powdery mildew Erysiphe australiana growing on crape myrtle leaves were observed with field emission scanning electron microscopy. The powdery mildew infection caused distortion and withering of the leaves, and nearly all external parts such as flowers, petioles, and branches were covered by the whitish colonies. Hyphal proliferation was prevalent on the adaxial surface of the powdery mildew-infected leaves.

View Article and Find Full Text PDF