98%
921
2 minutes
20
Jujube witches' broom (JWB) disease, associated with the presence of phytoplasmas, induces huge crop losses in the woody perennial fruit tree Ziziphus jujuba. An imbalance in the phytohormone auxin is thought to be a key factor in the development of the witches' broom symptoms, and in the alteration of floral development into leafy structures, termed phyllody. The Auxin Response Factor (ARF) gene family controls auxin-responsive gene expression during plant growth and development. However, it remains unknown if the ARF genes are involved in the formation of leaf-like flowers. In the present study, sixteen jujube ARF genes were identified bioinformatically and annotated based on the Z. jujuba cv. Dongzao genome. The ZjARFs were homologous to 12 out of the 23 Arabidopsis ARFs and were distributed in 8 jujube chromosomes and 3 unmapped scaffolds. Phylogenetic analysis grouped the ZjARFs into three classes. Spatio-temporal expression analysis revealed that the ZjARF genes were differentially expressed among different tissues during normal development. The expression of seven ZjARF genes was significantly decreased from flower buds to flowering. JWB-infected jujube plants developed the typical phyllody symptoms and showed lower auxin accumulation during floral development. ZjARF1, ZjARF2, ZjARF3, ZjARF4 and ZjARF8 resulted differentially regulated after phytoplasma infection. ZjARF4 was down-regulated before and during floral development in phytoplasma-infected plants, but it was significantly up-regulated before flowering and down-regulated during flowering in the healthy plants. Target site analysis showed that miRNA167, miRNA529 and miRNA2950 could directly target ZjARF4. Together, the data showed that the auxin-controlled ARF4 gene is likely involved in the disruption of floral development in phytoplasma-infected jujube plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2020.144656 | DOI Listing |
Plant Sci
September 2025
Institute of Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China. Electronic address:
Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.
View Article and Find Full Text PDFGene
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Marigold (Tagetes erecta) serves as both an ornamental and economically significant species, owing to its diverse floral coloration and exceptionally high petal carotenoid content. Carotenoid cleavage dioxygenase (CCD), as the key enzymatic component, mediates the carotenoid degradation process. In this study, we cloned and functionally characterized a CCD4 gene to elucidate its regulatory function in petal color and carotenoid biosynthesis.
View Article and Find Full Text PDFPlanta
September 2025
Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.
View Article and Find Full Text PDFPlant Commun
September 2025
School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:
The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.
View Article and Find Full Text PDFProteomics
September 2025
Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.
View Article and Find Full Text PDF