Who Drives Green Innovation? A Game Theoretical Analysis of a Closed-Loop Supply Chain under Different Power Structures.

Int J Environ Res Public Health

Division of Software, Media, and Industrial Engineering, Kangwon National University, 346 Joongang-ro, Samcheok-si, Gangwon-do 29513, Korea.

Published: March 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As awareness of environmental protection increases worldwide, enterprises have been building their supply chains in ways that conserve natural resources and minimize the creation of pollutants. One of the practical ways to make supply chains more sustainable is for enterprises to utilize green innovation strategies and to increase resource reuse. In this work, we focus on a closed-loop supply chain (CLSC) consisting of a manufacturer, a retailer, and a collector. In the investigated CLSC, the manufacturer and the retailer drive the green innovation strategy either individually or simultaneously to boost market demand. In the reverse flow of the CLSC, the collector is responsible for collecting consumers' used products and transferring them to the manufacturer for remanufacturing. By combining two types of the market leadership and three types of green innovation strategies, we establish six different Stackelberg game models and solve them analytically. Through an extensive comparative analysis, we show who should have market leadership and who should drive the green innovation strategy in the CLSC. Various numerical examples are also given to support our major findings. One of our key findings suggests that the supply chain members must participate in green innovation activities at the same time to achieve a win-win scenario in the CLSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178265PMC
http://dx.doi.org/10.3390/ijerph17072274DOI Listing

Publication Analysis

Top Keywords

green innovation
20
supply chain
12
closed-loop supply
8
supply chains
8
innovation strategies
8
manufacturer retailer
8
drive green
8
innovation strategy
8
market leadership
8
supply
5

Similar Publications

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

Under China's national sustainability strategy, the logistics industry is confronted with the imperative of high-quality green development. Given its status as the leading economic province and a national logistics hub, investigating green logistics development in Guangdong province holds paramount strategic importance. To comprehensively evaluate green logistics development efficiency of 21 cities in Guangdong from 2016 to 2022, this study employed the super-efficiency slacks-based measure model (Super-SBM) with undesirable outputs, the Global Malmquist-Luenberger (GML) productivity index and a four-quadrant analysis based on static and dynamic efficiency.

View Article and Find Full Text PDF

Signal Peptide-Guided Delivery of a Mucin-Like Collagen Analogue for Periplasmic Barrier Reinforcement: A Platform for Enhancing Microbial Survival.

ACS Synth Biol

September 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.

The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.

View Article and Find Full Text PDF

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

Dental waste, including metal, plastic, and chemical residues, and high energy and water consumption, significantly contribute to environmental degradation. This review highlights the environmental impact of common dental materials and practices, such as amalgam, resin composites, and disposable plastics. The aim is to examine current evidence, emphasizing mercury pollution, microplastic release, and biomedical waste handling.

View Article and Find Full Text PDF