Generating cell-derived matrices from human trabecular meshwork cell cultures for mechanistic studies.

Methods Cell Biol

Department of Basic Sciences, University of Houston, Houston, TX, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United Stat

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ocular hypertension has been attributed to increased resistance to aqueous outflow often as a result of changes in trabecular meshwork (TM) extracellular matrix (ECM) using in vivo animal models (for example, by genetic manipulation) and ex vivo anterior segment perfusion organ cultures. These are, however, complex and difficult in dissecting molecular mechanisms and interactions. In vitro approaches to mimic the underlying substrate exist by manipulating either ECM topography, mechanics, or chemistry. These models best investigate the role of individual ECM protein(s) and/or substrate property, and thus do not recapitulate the multifactorial extracellular microenvironment; hence, mitigating its physiological relevance for mechanistic studies. Cell-derived matrices (CDMs), however, are capable of presenting a 3D-microenvironment rich in topography, chemistry, and whose mechanics can be tuned to better represent the network of native ECM constituents in vivo. Critically, the composition of CDMs may also be fine-tuned by addition of small molecules or relevant bioactive factors to mimic homeostasis or pathology. Here, we first provide a streamlined protocol for generating CDMs from TM cell cultures from normal or glaucomatous donor tissues. Second, we document how TM cells can be pharmacologically manipulated to obtain glucocorticoid-induced CDMs and how generated pristine CDMs can be manipulated with reagents like genipin. Finally, we summarize how CDMs may be used in mechanistic studies and discuss their probable application in future TM regenerative studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681936PMC
http://dx.doi.org/10.1016/bs.mcb.2019.10.008DOI Listing

Publication Analysis

Top Keywords

mechanistic studies
12
cell-derived matrices
8
trabecular meshwork
8
cell cultures
8
cdms
6
generating cell-derived
4
matrices human
4
human trabecular
4
meshwork cell
4
cultures mechanistic
4

Similar Publications

Temporal transcriptomics reveal crucial networks underlying jasmonate-mediated diurnal floret opening and closure in rice.

Sci China Life Sci

September 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.

View Article and Find Full Text PDF

Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.

Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.

View Article and Find Full Text PDF

Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.

View Article and Find Full Text PDF

GPCRs are known for their versatile signaling roles at the plasma membrane; however, recent studies have revealed that these receptors also function within various intracellular compartments, such as endosomes, the Golgi apparatus, and the endoplasmic reticulum. This spatially distinct signaling, termed location bias, allows GPCRs to initiate unique signaling cascades and influence cellular processes-including cAMP production, calcium mobilization, and protein phosphorylation-in a compartment-specific manner. By mapping the impact of GPCR signaling from these subcellular locations, this chapter emphasizes the mechanisms underlying signaling from intracellular receptor pools in diversifying receptor functionality.

View Article and Find Full Text PDF

The colon exhibits higher propensity for tumour development than ileum. However, the role of immune microenvironment differences in driving this disparity remains unclear. Here, by comparing paired ileum and colon samples from patients with colorectal cancer (CRC) and healthy donors, we identified ileum-enriched CD160CD8 T cells with previously unrecognized characteristics, including resistance to terminal exhaustion and strong clonal expansion.

View Article and Find Full Text PDF