Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules.

Medchemcomm

Department of Chemistry , Purdue University, 560 Oval Drive , West Lafayette , IN 47907 , USA . Email:

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069516PMC
http://dx.doi.org/10.1039/c8md00555aDOI Listing

Publication Analysis

Top Keywords

cgas-sting axis
12
cyclic dinucleotide-cgas-sting
8
dinucleotide-cgas-sting axis
8
small molecules
8
autoimmune diseases
8
cgas-sting pathway
8
axis
6
cgas-sting
5
interrupting cyclic
4
axis small
4

Similar Publications

Carbon ion combined photon radiotherapy induces ferroptosis via NCOA4-mediated ferritinophagy in glioblastoma.

Redox Biol

September 2025

Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 201321, China; Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201321,

Glioblastoma (GBM), the most prevalent and lethal primary malignancy of the central nervous system, remains refractory to conventional photon radiotherapy due to inherent limitations in dose distribution. Although carbon ion radiotherapy offers distinct advantages, including its characteristic Bragg peak deposition and superior relative biological effectiveness, its clinical application is constrained by high costs and increased toxicity. This study explores the radiobiological interactions underlying a mixed carbon ion-photon irradiation regimen, a promising strategy in advanced particle therapy.

View Article and Find Full Text PDF

Microglial activation-induced neuroinflammation and impaired neuronal mitophagy are recognized as pivotal pathogeneses in Parkinson's disease (PD). However, the role of microglial mitophagy in microglial activation during PD development remains unclear, and therapeutic interventions targeting this interaction are lacking. Rhapontigenin (Rhap), a stilbenoid enriched in Vitis vinifera, exhibits dual anti-neuroinflammatory and mitophagy-enhancing properties, but its therapeutic potential and mechanisms in PD are unexplored.

View Article and Find Full Text PDF

Tumor metabolic reprogramming has been recognized as a critical determinant in tumor development and cancer immunotherapy response. Aberrant choline metabolism is emerging as a defining hallmark of cancer. Here, we found that carbohydrate responsive element binding protein (ChREBP)-mediated choline deprivation induced tumor-associated macrophage (TAM) reprogramming and maintained an immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments of cognitive function. The vagus nerve (VN) provides a direct communication conduit between the central nervous system and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the vagus nerve (VNS) shows efficacy in ameliorating pathology in neurodegenerative diseases.

View Article and Find Full Text PDF

Understanding the toxicity induced by radiation-triggered neuroinflammation and the on-demand design of targeted peptide nanodrugs.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. fans

Radiation-induced brain injury (RIBI) represents a severe complication of cranial radiotherapy, substantially diminishing patients' quality of life. Unlike conventional brain injuries, RIBI evokes a unique chronic neuroinflammatory response that notably aggravates neurodegenerative processes. Despite significant progress in understanding the molecular mechanisms related to neuroinflammation, the specific and precise mechanisms that regulate neuroinflammation in RIBI and its associated toxicological effects remain largely unclear.

View Article and Find Full Text PDF