98%
921
2 minutes
20
Various computational methods were employed to investigate the zwitterion formation, a critical step for the reaction of monoethanolamine with CO, in five solvents (water, monoethanolamine, propylamine, methanol and chloroform) to probe the effect of hydrogen bond capacity of solvents on the reaction of amine with CO occurring in the amine-based CO capture process. The results indicate that the zwitterion can be formed in all considered solvents except chloroform. For two pairs of solvents (methanol and monoethanolamine, propylamine and chloroform) with similar dielectric constant but different hydrogen bond capacity, the solvents with higher hydrogen bond capacity (monoethanolamine and propylamine) facilitate the zwitterion formation. More importantly, kinetics parameters such as activation free energy for the zwitterion formation are more relevant to the hydrogen bond capacity than to dielectric constant of the considered solvents, clarifying the hydrogen bond capacity could be more important than dielectric constant in determining the kinetics of monoethanolamine with CO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2020.01.019 | DOI Listing |
Food Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.
View Article and Find Full Text PDFInorg Chem
September 2025
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
The selection of hydrogen-bonding donors is crucial for the development of stimuli-responsive luminescent materials that rely on weak hydrogen-bonding interactions. In this study, we report two novel dinuclear Cu(I) complexes, [Cu(μ-η(,),η(,)-dpa)(μ-dppm)](ClO) () and [Cu(μ-η(,),η(,)-dpa)(μ-dppa)](ClO)·2CHCOCH (), which differ in their diphosphine linkers (CH in dppm vs NH in dppa). X-ray crystallography reveals weak CH···O hydrogen bonds between dppm-CH and perchlorate-O in and weak NH···O interactions between dppa-NH and acetone-O in .
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China.
Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDF