98%
921
2 minutes
20
Aspen (Populus tremuloides Michx) is a widespread commercial forest tree of high economic importance in western Canada and has been subject to tree improvement efforts over the past two decades. Such improvement programs rely on accurate estimates of the genetic gain in growth traits and correlated response in adaptive traits that are important for forest health. Here, we estimated genetic parameters in 10 progeny trials containing >30,000 trees with pedigree structures based on a partial factorial mating design that includes 60 half-sibs, 100 full-sib families and 1,400 clonally replicated genotypes. Estimated narrow-sense and broad-sense heritabilities were low for height and diameter (~0.2), but moderate for the dates of budbreak and leaf senescence (~0.4). Furthermore, estimated genetic correlations between growth and phenology were moderate to strong with tall trees being associated with early budbreak (r = -0.3) and late leaf senescence (r = -0.7). Survival was not compromised, but was positively associated with early budbreak or late leaf senescence, indicating that utilizing the growing season was more important for survival and growth than avoiding early fall or late spring frosts. These result suggests that populations are adapted to colder climate conditions and lag behind environmental conditions to which they are optimally adapted due to substantial climate warming observed over the last several decades for the study area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053761 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229225 | PLOS |
Plant Physiol Biochem
August 2025
College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:
Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.
View Article and Find Full Text PDFFungal Biol
October 2025
Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino La Carrindanga Km 7, Bahía Blanca, 8000, Argentina.
Tritrophic interactions involving host plants, fungal pathogens and mycoparasites play an important role in the dynamics of natural ecosystems. In this work, we investigate the impact of the rust fungus Puccinia araujiae on the growth of Araujia hortorum plants in the presence/absence of a mycoparasitic Cladosporium species identified here as Cladosporium sphaerospermum, supported by both morphological and molecular studies. The capacity of the latter to grow and reproduce at the expense of teliospores of the rust was confirmed through microscopic observations.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Biology (Basel)
July 2025
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower () is a highly photosynthetic plant; here, a -homologues gene was identified from the sunflower genome by bioinformatics. To analyze the bio-function of , transgenic rice plants overexpressing () were constructed and characterized via phenotype.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China.
Introduction: Phenology is a sensitive biological indicator of climate change. Increasing nitrogen (N) deposition has amplified phenological shifts, making their study across terrestrial ecosystems crucial for understanding global change responses. While existing research focuses on single ecosystems, comparative analyses are lacking.
View Article and Find Full Text PDF