Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae.

Insect Biochem Mol Biol

Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium. Electronic address:

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of CRISPR-Cas9 has revolutionized functional genetic work in many organisms, including more and more insect species. However, successful gene editing or genetic transformation has not yet been reported for chelicerates, the second largest group of terrestrial animals. Within this group, some mite and tick species are economically very important for agriculture and human health, and the availability of a gene-editing tool would be a significant advancement for the field. Here, we report on the use of CRISPR-Cas9 in the spider mite Tetranychus urticae. The ovary of virgin adult females was injected with a mix of Cas9 and sgRNAs targeting the phytoene desaturase gene. Natural mutants of this laterally transferred gene have previously shown an easy-to-score albino phenotype. Albino sons of injected virgin females were mated with wild-type females, and two independent transformed lines where created and further characterized. Albinism inherited as a recessive monogenic trait. Sequencing of the complete target-gene of both lines revealed two different lesions at expected locations near the PAM site in the target-gene. Both lines did not genetically complement each other in dedicated crosses, nor when crossed to a reference albino strain with a known genetic defect in the same gene. In conclusion, two independent mutagenesis events were induced in the spider mite T. urticae using CRISPR-Cas9, hereby providing proof-of-concept that CRISPR-Cas9 can be used to create gene knockouts in mites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2020.103347DOI Listing

Publication Analysis

Top Keywords

tetranychus urticae
8
urticae crispr-cas9
8
spider mite
8
target-gene lines
8
crispr-cas9
5
gene
5
targeted mutagenesis
4
mutagenesis crispr-cas9
4
crispr-cas9 chelicerate
4
chelicerate herbivore
4

Similar Publications

Monitoring and molecular mechanisms of resistance to complex III inhibitors in Tetranychus urticae populations from Türkiye.

Pestic Biochem Physiol

November 2025

Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110 Ankara, Türkiye. Electronic address:

Acequinocyl and bifenazate are widely used acaricides that inhibit mitochondrial electron transport at complex III, due to their high efficacy and low side effects. However, resistance development has been reported in Tetranychus urticae populations worldwide, likely as a result of frequent applications. This study assessed the phenotypic resistance levels of T.

View Article and Find Full Text PDF

Acynonapyr is a novel acaricide developed by Nippon Soda Co., Ltd. It contains a unique azabicyclic ring and oxyamine structure and represents the first agricultural chemical that targets calcium-activated potassium channels, classified as Group 33 in the IRAC Mode of Action Classification.

View Article and Find Full Text PDF

The two-spotted spider mite, , is one of the polyphagous pests of several crops and forestry, resistant to numerous conventional chemicals. Due to the negative side effects of harmful chemical pesticides, such as environmental pollution, and risks to human health, the introduction of effective and low-risk alternatives is essential. The promising pesticidal effects of essential oils (EOs) isolated from have been documented in recent studies.

View Article and Find Full Text PDF

Studying the nutritional ecology of (Oudemans) at different temperatures is a fundamental tool for improving mass production for use in biological control of pest mites. The current research studied the impact of both food types and temperatures on the life history and demographic parameters of the predator mite . Mite cultures in the laboratory were developed using Koch, and was collected from field plants.

View Article and Find Full Text PDF

, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries ( Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars.

View Article and Find Full Text PDF