98%
921
2 minutes
20
Clostridioides difficile strains were isolated from manure and digestate samples from five biogas plants in France. The objective of this study was to characterize these isolates using PCR ribotyping, wgMLST, a multiplex PCR targeting genes encoding for the main virulence factors, i.e. tcdA, tcdB, cdtA and cdtB, and antimicrobial susceptibility assays. The 54 strains characterized were all positive for tcdA and tcdB and 83% (45/54) were positive for the binary toxin genes. PCR ribotypes 126 (59%) and 078 (37%) were predominant, and wgMLST analysis of 18 isolates showed close proximity of strains within a single biogas plant. Samples from the biogas plant supplied with cattle and poultry manure displayed the largest variety in PCR ribotypes. The in vitro activities of nine antimicrobial agents were determined. All the strains were susceptible to vancomycin and metronidazole, which are currently considered first-line treatments for C. difficile infection in humans. All the strains were resistant to clindamycin. The results of this study show that a high percentage of C. difficile strains present in the French biogas plants investigated are toxigenic strains from PCR ribotypes also commonly found in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anaerobe.2020.102180 | DOI Listing |
Microbiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Engineering, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Ordos Laboratory, Inner
Currently, electrocatalytic conversion of carbon dioxide into higher-value compounds is a promising approach. However, developing a stable and efficient catalyst with high selectivity for specific products remains a major challenge. Herein, we constructed a bismuth-based metal-organic framework (Bi-MOF) as a catalyst for the catalytic production of formic acid from carbon dioxide, to which different ratios of tin metal elements were doped.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China. Electronic address:
Thermal hydrolysis pretreatment coupled with anaerobic digestion (THP-AD) substantially improves the energy recovery from sludge; however, its high thermal energy input often undermines overall system efficiency. This study developed a machine-learning-driven optimisation framework. The results indicated that, compared to the other three models, extreme gradient boosting achieved the highest predictive performance (R > 0.
View Article and Find Full Text PDFMol Cells
September 2025
Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea; Digital Biotech
Plant synthetic biology is an emerging field that combines bioinformatics, computational gene circuit design, and plant science. It has the potential to be applied in various areas, including the production of pharmaceuticals, vaccines, biofuels, and various biomaterials, including plant natural products (PNP). This review highlights recent advancements in plant synthetic biology, particularly in the development and application of biological parts such as promoters and terminators, which play a crucial role in precise gene expression regulation.
View Article and Find Full Text PDF