98%
921
2 minutes
20
Purpose: Volumetric assessment of meningiomas represents a valuable tool for treatment planning and evaluation of tumor growth as it enables a more precise assessment of tumor size than conventional diameter methods. This study established a dedicated meningioma deep learning model based on routine magnetic resonance imaging (MRI) data and evaluated its performance for automated tumor segmentation.
Methods: The MRI datasets included T1-weighted/T2-weighted, T1-weighted contrast-enhanced (T1CE) and FLAIR of 126 patients with intracranial meningiomas (grade I: 97, grade II: 29). For automated segmentation, an established deep learning model architecture (3D deep convolutional neural network, DeepMedic, BioMedIA) operating on all four MR sequences was used. Segmentation included the following two components: (i) contrast-enhancing tumor volume in T1CE and (ii) total lesion volume (union of lesion volume in T1CE and FLAIR, including solid tumor parts and surrounding edema). Preprocessing of imaging data included registration, skull stripping, resampling, and normalization. After training of the deep learning model using manual segmentations by 2 independent readers from 70 patients (training group), the algorithm was evaluated on 56 patients (validation group) by comparing automated to ground truth manual segmentations, which were performed by 2 experienced readers in consensus.
Results: Of the 56 meningiomas in the validation group 55 were detected by the deep learning model. In these patients the comparison of the deep learning model and manual segmentations revealed average dice coefficients of 0.91 ± 0.08 for contrast-enhancing tumor volume and 0.82 ± 0.12 for total lesion volume. In the training group, interreader variabilities of the 2 manual readers were 0.92 ± 0.07 for contrast-enhancing tumor and 0.88 ± 0.05 for total lesion volume.
Conclusion: Deep learning-based automated segmentation yielded high segmentation accuracy, comparable to manual interreader variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00062-020-00884-4 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Med Educ
September 2025
Department of Learning, Informatics, Management & Ethics (LIME) Widerströmska huset, Karolinska Institutet, Stockholm, Sweden.
Background: Live tissue training (LTT) refers to the use of live anaesthetised animals for the purpose of medical education. It is a type of simulation training that is contentious, and there is an ethical imperative for educators to justify the use of animals. This should include scrutinising educational practices.
View Article and Find Full Text PDFBMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Public Health
September 2025
Department of Sociology and Work Science, University of Gothenburg, Gothenburg, Sweden.
Background: Mental health problems are common in the working-age population. More knowledge is needed on how to support work participation and reduce sickness absence. The objective of the study was to estimate the distribution of mental well-being and work capacity in women and men in a working population and assess the association between mental well-being and work capacity, while adjusting for sociodemographic characteristics, health status, and working positions.
View Article and Find Full Text PDF