Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Volumetric assessment of meningiomas represents a valuable tool for treatment planning and evaluation of tumor growth as it enables a more precise assessment of tumor size than conventional diameter methods. This study established a dedicated meningioma deep learning model based on routine magnetic resonance imaging (MRI) data and evaluated its performance for automated tumor segmentation.

Methods: The MRI datasets included T1-weighted/T2-weighted, T1-weighted contrast-enhanced (T1CE) and FLAIR of 126 patients with intracranial meningiomas (grade I: 97, grade II: 29). For automated segmentation, an established deep learning model architecture (3D deep convolutional neural network, DeepMedic, BioMedIA) operating on all four MR sequences was used. Segmentation included the following two components: (i) contrast-enhancing tumor volume in T1CE and (ii) total lesion volume (union of lesion volume in T1CE and FLAIR, including solid tumor parts and surrounding edema). Preprocessing of imaging data included registration, skull stripping, resampling, and normalization. After training of the deep learning model using manual segmentations by 2 independent readers from 70 patients (training group), the algorithm was evaluated on 56 patients (validation group) by comparing automated to ground truth manual segmentations, which were performed by 2 experienced readers in consensus.

Results: Of the 56 meningiomas in the validation group 55 were detected by the deep learning model. In these patients the comparison of the deep learning model and manual segmentations revealed average dice coefficients of 0.91 ± 0.08 for contrast-enhancing tumor volume and 0.82 ± 0.12 for total lesion volume. In the training group, interreader variabilities of the 2 manual readers were 0.92 ± 0.07 for contrast-enhancing tumor and 0.88 ± 0.05 for total lesion volume.

Conclusion: Deep learning-based automated segmentation yielded high segmentation accuracy, comparable to manual interreader variability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00062-020-00884-4DOI Listing

Publication Analysis

Top Keywords

learning model
24
deep learning
20
model manual
12
lesion volume
12
manual segmentations
12
t1ce flair
8
automated segmentation
8
tumor volume
8
volume t1ce
8
training group
8

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Optimising the educational utility of live tissue training in trauma surgery.

BMC Med Educ

September 2025

Department of Learning, Informatics, Management & Ethics (LIME) Widerströmska huset, Karolinska Institutet, Stockholm, Sweden.

Background: Live tissue training (LTT) refers to the use of live anaesthetised animals for the purpose of medical education. It is a type of simulation training that is contentious, and there is an ethical imperative for educators to justify the use of animals. This should include scrutinising educational practices.

View Article and Find Full Text PDF

Background: Mental health problems are common in the working-age population. More knowledge is needed on how to support work participation and reduce sickness absence. The objective of the study was to estimate the distribution of mental well-being and work capacity in women and men in a working population and assess the association between mental well-being and work capacity, while adjusting for sociodemographic characteristics, health status, and working positions.

View Article and Find Full Text PDF