98%
921
2 minutes
20
Over the past decades, there have been huge advances in understanding cellular responses to ionising radiation (IR) and DNA damage. These studies, however, were mostly executed with cell lines and mice using single or multiple acute doses of radiation. Hence, relatively little is known about how continuous exposure to low dose ionising radiation affects normal cells and organisms, even though our cells are constantly exposed to low levels of radiation. We addressed this issue by examining the consequences of exposing human primary cells to continuous ionising γ-radiation delivered at 6-20 mGy/h. Although these dose rates are estimated to inflict fewer than a single DNA double-strand break (DSB) per hour per cell, they still caused dose-dependent reductions in cell proliferation and increased cellular senescence. We concomitantly observed histone protein levels to reduce by up to 40%, which in contrast to previous observations, was not mainly due to protein degradation but instead correlated with reduced histone gene expression. Histone reductions were accompanied by enlarged nuclear size paralleled by an increase in global transcription, including that of pro-inflammatory genes. Thus, chronic irradiation, even at low dose-rates, can induce cell senescence and alter gene expression via a hitherto uncharacterised epigenetic route. These features of chronic radiation represent a new aspect of radiation biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010678 | PMC |
http://dx.doi.org/10.1038/s41598-020-59163-4 | DOI Listing |
Am J Chin Med
September 2025
Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Astragaloside IV (ASIV), the main active component of the traditional Chinese medicine HuangQi, exhibits ameliorating effects on myocardial fibrosis through unclear mechanisms. To investigate the effects of ASIV on Endothelial-to-mesenchymal transition (EndMT) in myocardial fibrosis, 10 ng/mL TGF-β1 was used to induce EndMT in human umbilical vein endothelial cells (HUVECs) and a 5 mg/kg/d subcutaneous injection of Isoproterenol (ISO) was used to induce myocardial fibrosis in mice . The drug affinity-responsive target stability (DARTS) was used to identify the target proteins of ASIV in endothelial cells.
View Article and Find Full Text PDFJ Fish Biol
September 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
Citrobacter freundii, a common zoonotic pathogen affecting humans, livestock and fish, is recognized for its substantial impact on largemouth bass (Micropterus salmoides) mortality. However, the mechanisms of C. freundii infection in largemouth bass remain poorly understood.
View Article and Find Full Text PDFImmunol Invest
September 2025
Department of Function, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, China.
Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.
Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.
Biotechnol Lett
September 2025
Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.
Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.
Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.