Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes.

Angew Chem Int Ed Engl

Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT, 06516, USA.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing electrolytes compatible with efficient and reversible cycling of electrodes is critical to the success of rechargeable Li metal batteries (LMBs). The Coulombic efficiencies and cycle lives of LMBs with ethylene carbonate (EC), dimethyl carbonate, ethylene sulfite (ES), and their combinations as electrolyte solvents show that in a binary-solvent electrolyte the extent of electrolyte decomposition on the electrode surface is dependent on the solvent component that dominates the solvation sheath of Li . This knowledge led to the development of an EC-ES electrolyte exhibiting high performance for Li||LiFePO batteries. Carbonate molecules occupy the solvation sheath and improve the Coulombic efficiencies of both the anode and cathode. Sulfite molecules lead to desirable morphology and composition of the solid electrolyte interphase and extend the cycle life of the Li metal anode. The cooperation between these components provides a new example of electrolyte optimization for improved LMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202000023DOI Listing

Publication Analysis

Top Keywords

coulombic efficiencies
8
solvation sheath
8
electrolyte
6
solvent molecule
4
molecule cooperation
4
cooperation enhancing
4
enhancing lithium
4
lithium metal
4
metal battery
4
battery performance
4

Similar Publications

Significantly enhanced breakdown strength and energy density performances of methyl methacrylate--glycidyl methacrylate nanocomposites filled with BNNs@PDA-Ag hybrid structures.

Nanoscale

September 2025

School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.

Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.

View Article and Find Full Text PDF

Crystal Facet-Engineered Anion Regulation Enables Fast-Charging Stability in Lithium Metal Batteries.

Angew Chem Int Ed Engl

September 2025

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Resea

Lithium metal batteries (LMBs) offer exceptional energy density and output voltage. However, their practical application remains hindered by sluggish ion transport and uncontrolled lithium dendrite formation, particularly under fast-charging conditions. Here, we report a facet-engineered anion-regulating separator based on zeolitic imidazolate framework-8 (ZIF-8) with preferentially crystal-exposed (110) facets.

View Article and Find Full Text PDF

Polymer dielectrics have attracted substantial attention for their extensive applications in advanced electronic power systems. However, their practical implementation is substantially hindered by the drastic deterioration in breakdown strength and energy storage capabilities at elevated temperatures. Herein, corrugated alumina (AlO) nanosheets anchored with uniformly dispersed silver nanoparticles (AgNPs) are fabricated via a sequential bimetallic ion exchange method using polyimide (PI) film as the sacrificing template.

View Article and Find Full Text PDF

Precisely Regulating the Graphitic Layers of Hard Carbon via Oxygen Release to Elucidate the Formation Mechanism of Closed Pores.

ACS Appl Mater Interfaces

September 2025

National Energy Metal Resources and New Materials Key Laboratory Engineering Research Center of the Ministry of Education for Advanced Battery Materials Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy School of Metallurgy and Environment, Central South University, Changsha 41008

Hard carbon (HC), recognized as the most promising anode material for sodium-ion batteries (SIBs), exhibits multiple forms of sodium storage (adsorption on graphitic layers, insertion between graphitic sheets, and filling in closed pores). Low initial coulombic efficiency (ICE) and low plateau region capacity are the main issues with HC, and it is necessary to understand the evolution laws of graphitic layers and closed pores. Here, we regulate the structure of graphitic layers by deliberately changing the oxygen content in HC materials and reveal the mechanism of formation of closed pores.

View Article and Find Full Text PDF

Fibroin: A Multi-Functional Bio-Derived Binder for Lithium-Sulfur Batteries.

ACS Sustain Chem Eng

September 2025

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.

Traditionally, binders such as poly-(vinylidene fluoride) (PVDF) have been used within lithium-sulfur (Li-S) batteries, but these present environmental and recyclability challenges and have little to no impact on the processes that drive degradation in the cell's chemistry. Ideally, a Li-S battery binder would contribute to the mitigation of the polysulfide shuttle effect and negate the impacts of positive electrode volume expansion while being compatible with aqueous ink preparation and low-energy, low-toxicity recycling processes. In this work, we demonstrate that fibroin, an economical and sustainable biological polymer with an abundance of functional groups, can effectively trap polysulfides while still offering the durability, cyclability, and ease of use offered by the current state-of-the-art binder (PVDF).

View Article and Find Full Text PDF