98%
921
2 minutes
20
The process of capacitance measurement consists of converting the capacitance under measurement into a secondary variable such as voltage, time-period, and frequency. This paper lays special focus on the capacitance-frequency measurement due to the offered advantages by this technique over the other methods. For this purpose, a review of the various frequency estimation techniques is presented while exploring the possibility of applying them for capacitance measurement. These techniques are mainly classified as phase-locked loop, frequency-locked loop (FLL), parameter estimation methods, and discrete Fourier transform (DFT) based FLL structures. Furthermore, the possibility of integrating computationally efficient DFT structures in frequency locked loops has been investigated. The performance comparison of these techniques proves that a more accurate measurement of capacitance could be achieved through them. The proposed methodology of capacitance measurement offers good accuracy, wider range, quick convergence, and system-on-chip implementation. Moreover, FLLs could be applied for the capacitance measurement when the input signal is nonsinusoidal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5129000 | DOI Listing |
J Am Soc Mass Spectrom
September 2025
Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405.
In charge detection mass spectrometry (CD-MS) ions are trapped in an electrostatic linear ion trap (ELIT) where they oscillate back and forth through a conducting cylinder. The oscillating ions induce a periodic charge separation that is detected by a charge sensitive amplifier (CSA) connected to the cylinder. The resulting time domain signal is analyzed using short-time Fourier transforms to give the mass-to-charge ratio and charge for each ion, which are then multiplied to give the mass.
View Article and Find Full Text PDFPLoS One
September 2025
The School of Electrics and Information Engineering, Yunnan Minzu University, Kunming, China.
To address the growing demand for compact and high-performance microwave filters in modern communication systems, a mixed-mode bandpass filter is proposed in the article. A dual-layer substrate integrated waveguide resonator loaded with a capacitive patch (CP-DSIWR) is proposed and theoretically analyzed, with both patch modes and cavity modes existing. To construct the bandpass filter, two rows of metallic vias are designed in the CP-SIWR to enable coupling between the two types of the modes, with the structure being fed by microstrip line.
View Article and Find Full Text PDFAnal Chem
September 2025
RUSA-Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra 431 004, India.
In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Graduate School of Medicine, Nagoya University, Nagoya, Japan.
Electroactive polymer (EAP) artificial muscles are gaining attention in robotic control technologies. Among them, the development of self-sensing actuators that integrate sensing mechanisms within artificial muscles is highly anticipated. This study aimed to evaluate the accuracy and precision of the sensing capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda Gosei Co.
View Article and Find Full Text PDFCuZnSnS (CZTS) has been synthesised using ethylene glycol as a solvent by the solvothermal method. Preliminary characterisation, like X-ray diffraction, Raman spectroscopy, and FTIR, confirmed the tetragonal structure of CZTS with kesterite phase. In the synthesis, a series of samples with different concentrations of sulfur were produced, accompanied by an in-depth analysis of structural parameters such as crystallite size and strain, utilising both the Scherrer equation and the Williamson-Hall method.
View Article and Find Full Text PDF