98%
921
2 minutes
20
Adeno-associated virus serotype 8 (AAV8) gene therapy has shown efficacy in several clinical trials and is considered a highly promising technology to treat monogenic diseases such as hemophilia A and B. However, a major drawback of AAV8 gene therapy is that it can be applied only once because anti-AAV8 immunity develops after the first treatment. Readministration may be required in patients who are expected to need redosing, eg, due to organ growth, or to boost suboptimal expression levels, but no redosing protocol has been established. We have developed a preventive immune-suppressive protocol for a human factor IX (FIX) vector with an intended dose of ~5 × 10 vg/kg that inhibits the development of anti-AAV8 neutralizing-antibody (NAb) responses and anti-AAV8 T-cell responses using CTLA4-IgG (abatacept). In a preclinical model, transient treatment with abatacept during initial human FIX gene therapy efficiently inhibited the generation of AAV8-specific cellular and humoral responses, and thus permitted redosing of FIX. Furthermore, our data suggest that by suppression of anti-AAV8 NAb responses after the second higher dose (4 × 10 vg/kg) this protocol can be used to enable redosing up to such high doses. An additional advantage of CTLA4-IgG blocking CD28-mediated signals is its potential suppression of AAV8-specific cytotoxic CD8 T-cell responses, which are believed to kill transduced hepatocytes and might interfere with a successful readministration. Redosing protocols using approved drugs would be beneficial for patients because they could effortlessly be applied in clinical trials and enable safe and efficient treatment options for patients undergoing AAV8 gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7318590 | PMC |
http://dx.doi.org/10.1111/jth.14757 | DOI Listing |
Mol Ther Methods Clin Dev
June 2025
Precision Safety, Pharma Product Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland.
Adeno-associated virus (AAV) vectors are widely used in gene therapy, particularly for liver-targeted treatments. However, predicting human-specific outcomes, such as transduction efficiency and hepatotoxicity, remains challenging. Reliable models are urgently needed to bridge the gap between preclinical studies and clinical applications.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
Recombinant adeno-associated viruses (rAAV) have emerged as a preferred strategy for gene delivery. However, the immune response to rAAV presents a major limitation, leading to serious adverse events in clinical trials. This study investigates the interaction between rAAV and the innate immune system.
View Article and Find Full Text PDFCommun Med (Lond)
September 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Retinitis pigmentosa (RP) is a leading cause of blindness affecting 2 million people worldwide. Mutations in cyclic nucleotide-gated channel alpha 1 (CNGA1) account for 2-8% of autosomal recessive RP with no available treatment. Here we further evaluate our previously developed Cnga1 mouse model.
View Article and Find Full Text PDFJ Chromatogr A
October 2025
Tosoh Bioscience LLC, 3604 Horizon Drive, King of Prussia, PA 19406, USA. Electronic address:
Recombinant adeno-associated virus (AAV) vectors have emerged as powerful gene delivery tools for the treatment of genetic disorders. However, the production of high-quality AAV vectors still poses significant challenges. In upstream manufacturing, AAV genome packaging typically results in a diverse pool of empty and partially filled capsids, as well as the desired functional virions.
View Article and Find Full Text PDF