98%
921
2 minutes
20
Recent evidences indicate that mitochondrial genes and function are decreased in active ulcerative colitis (UC) patients, in particular, the activity of Complex I of the electron transport chain is heavily compromised. MCJ is a mitochondrial inner membrane protein identified as a natural inhibitor of respiratory chain Complex I. The induction of experimental colitis in MCJ-deficient mice leads to the upregulation of Timp3 expression resulting in the inhibition of TACE activity that likely inhibits Tnf and Tnfr1 shedding from the cell membrane in the colon. MCJ-deficient mice also show higher expression of Myd88 and Tlr9, proinflammatory genes and disease severity. Interestingly, the absence of MCJ resulted in distinct microbiota metabolism and composition, including a member of the gut community in UC patients, Ruminococcus gnavus. These changes provoked an effect on IgA levels. Gene expression analyses in UC patients showed decreased levels of MCJ and higher expression of TIMP3, suggesting a relevant role of mitochondrial genes and function among active UC. The MCJ deficiency disturbs the regulatory relationship between the host mitochondria and microbiota affecting disease severity. Our results indicate that mitochondria function may be an important factor in the pathogenesis. All together support the importance of MCJ regulation during UC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969106 | PMC |
http://dx.doi.org/10.1038/s41598-019-57348-0 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
The prevalence of inflammatory bowel disease (IBD), including crohn's disease and ulcerative colitis, is rising worldwide. Among various potential contributors, low dietary fiber (DF) diet habit stands out as a substantial factor in this accelerating trend. Conversely, DF supplementation inhibits the manifestation of IBD pathology and promotes inflammatory remission.
View Article and Find Full Text PDFJ Crohns Colitis
September 2025
Université de Paris, INSERM U1342, Institut de Recherche Saint-Louis, Paris, France.
Background And Aims: Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remain heterogeneous disorders with variable response to biologics. Post-operative recurrence in CD is common despite surgery and prophylactic biotherapies. Understanding the inflammatory mediators associated with recurrence and treatment response could pave the way for personalized strategies.
View Article and Find Full Text PDFUnited European Gastroenterol J
September 2025
Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita Salute San Raffaele University, Milan, Italy.
Background: Few data are available on the impact of primary sclerosing cholangitis (PSC) on inflammatory bowel disease (IBD).
Objective: We conducted a retrospective study using TriNetX to compare the outcomes of patients with IBD and those with concomitant IBD and PSC.
Methods: All patients with a confirmed diagnosis of Crohn's disease (CD), ulcerative colitis (UC), or indeterminate colitis with or without PSC were eligible.
Arch Microbiol
September 2025
School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
Ginger, a globally cultivated spice and medicinal herb, is renowned for its health benefits and distinctive flavor. As ginger's main pungent and bioactive components, 6-gingerol and 6-shogaol share similar physicochemical properties and can be obtained by extraction from ginger or chemical synthesis. After oral ingestion, the biological fate of 6-gingerol and 6-shogaol are influenced by processes including absorption, biotransformation, distribution, and excretion.
View Article and Find Full Text PDF