Crystal Structure of the Ryanodine Receptor SPRY2 Domain from the Diamondback Moth Provides Insights into the Development of Novel Insecticides.

J Agric Food Chem

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology , Fujian Agriculture and Forestry University, Fuzhou 350002 , China.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diamide insecticides targeting ryanodine receptors (RyRs) are a major class of pesticides used to control a wide range of agricultural pests, but their efficacies have been reduced dramatically by the recent emergence of resistance mutations. There is a pressing need to develop novel insecticides, targeting distinct and novel binding sites within insect RyRs to overcome the resistance crisis; however, the limited structural information on insect RyRs is a major roadblock to our understanding of their molecular mechanisms. Here, we report the crystal structure of the RyR SPRY2 domain from the diamondback moth (DBM), , a destructive agricultural pest worldwide that has developed resistance to all classes of insecticide at 2.06 Å resolution. The overall fold of DBM SPRY2 is similar to its mammalian homolog, but it shows distinct conformations in several loops. Docking it into the recently published cryo-electron microscope structure of the full-length RyR reveals that two insect-specific loops interact with the BSol domain from the neighboring subunit. The SPRY2-BSol interface will change the conformation upon channel gating, indicating that it might be a potential targeting site for insect-specific insecticides. Interestingly, several previously identified disease-causing mutations also lie in the same interface, implying that this interface is important for channel gating. Another insect-specific loop located in the SPRY2-SPRY3 interface might indirectly affect another gating interface between SPRY3 and Repeat34.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b08151DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
spry2 domain
8
domain diamondback
8
diamondback moth
8
novel insecticides
8
insecticides targeting
8
ryrs major
8
insect ryrs
8
channel gating
8
interface
5

Similar Publications

Design and Synthesis of Structurally Novel Acridospiroisoxazole Derivatives and Their Antifungal Activity Study.

Chem Biodivers

September 2025

Key Lab of Natural Product Chemistry and Application at Universities of Education, Department of Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical Engineering, Yili Normal University, Xinjiang, China.

The persistent threat posed by phytopathogenic fungi to agricultural systems underscores the critical need for novel fungicides. Here, we synthesized and characterized a series of novel acridospiroisoxazole derivatives (H1-H36) using H/C NMR and mass spectrometry. The absolute configuration of compound H23 was confirmed using single-crystal x-ray diffraction analysis.

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.

View Article and Find Full Text PDF

An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF