Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca depletion followed by notable store-operated Ca entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca concentration ([Ca]) and reduced depolarization-triggered Ca influx likely due to the inactivation of voltage-gated Ca channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca] overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca] elevation and defective [Ca] transients. Extracellular Ca chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca overload and its detrimental consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999716PMC
http://dx.doi.org/10.14348/molcells.2019.0223DOI Listing

Publication Analysis

Top Keywords

mitochondrial uptake
12
cytosolic overload
8
mitochondrial
5
mcu
5
uptake relieves
4
relieves palmitate-induced
4
cytosolic
4
palmitate-induced cytosolic
4
overload min6
4
min6 cells
4

Similar Publications

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF

Due to the current limitations of boar semen cryopreservation systems, the effective restoration of sperm quality following thawing remains a significant challenge. This study investigates whether post-thaw boar sperm can uptake exogenous long-chain fatty acids (LCFAs) and utilize them for ATP generation, thereby sustaining linear motility and enhancing sperm vitality. Boar semen was diluted in extender solutions supplemented with varying concentrations of a lipid mixture (0, 0.

View Article and Find Full Text PDF

DWORF Gene Therapy Improves Cardiac Calcium Handling and Mitochondrial Function.

Circ Res

September 2025

Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, OH. (O.B.-E., Y.K., A.M.G., K.R.H., M.L.K., J.P.V., N.S.B., J.H., J.D.M., C.A.M.).

Background: Calcium (Ca) dysregulation is a hallmark of heart failure, impairing excitation-contraction coupling and contributing to pathological remodeling. The SERCA2a (sarco/endoplasmic reticulum Ca ATPase isoform 2a) mediates Ca reuptake into the sarcoplasmic reticulum (SR) during diastole, but its activity declines in failing hearts. DWORF (dwarf open reading frame), a newly identified cardiac microprotein, enhances SERCA2a activity and improves cardiomyocyte Ca cycling and contractility.

View Article and Find Full Text PDF

Microglial Membrane-Coated Biomimetic Nanoplatform for Enhanced Blood-Brain Barrier Penetration and Targeted Photodynamic Therapy in Orthotopic Glioblastoma.

Adv Healthc Mater

September 2025

Brain Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.

Glioblastoma multiforme (GBM) continues to pose a significant challenge in the field of neuro-oncology primarily because of the limited penetration of therapeutics across the blood-brain barrier (BBB) and the presence of immunosuppressive tumor microenvironments. To address these challenges, a HD-PEG@BM biomimetic nanoplatform (hereinafter referred to as HD-P@BM) is developed that cloaks the near-infrared II photosensitizer HD-PEG (HD-P) inside microglial membranes to enable enhanced BBB penetration and tumor-targeted delivery. In this study, it is found that the microglia-derived membranes enhanced the uptake of nanoparticles by both the glioma cells and tumor-associated microglia.

View Article and Find Full Text PDF

Tumors evolve to avoid immune destruction and establish an immunosuppressive microenvironment. Syngeneic mouse tumor models are critical for understanding tumor immune evasion and testing cancer immunotherapy. Derived from established mouse tumor cell lines that can already evade the immune system, these models cannot simulate early phases of immunoediting during initial tumorigenesis.

View Article and Find Full Text PDF