Nano and micro biomechanical analyses of the nucleus pulposus after in situ immobilization in rats.

Micron

Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, PR China; Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China. Electronic address:

Published: March 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immobilization can lead to intervertebral disc degeneration. The biomechanical characteristics of such discs have not so far been investigated at the micro- or nanoscale, the level at which cells sense and respond to the surrounding environment. This study aimed to characterize changes in the elastic modulus of the collagen fibrils in the nucleus pulposus at the nanoscale and correlate this with micro-biomechanical properties of the nucleus pulposus after immobilization, in addition to observation of tissue histology and its gene expressions. An immobilization system was used on the rat tail with an external fixation device. The elastic modulus was measured using both nano and micro probes for atomic force microscopy after 4 and 8 weeks of immobilization. Histology of the tissue was observed following hematoxylin and eosin staining. Gene expression in the annulus fibrosus tissue was quantified using real-time reverse transcription-polymerase chain reaction. The elastic modulus of the collagen fibrils in the nucleus pulposus at the nanoscale increased from 74.07 ± 17.06 MPa in the control to 90.06 ± 25.51 MPa after 8 weeks (P = 0.007), and from 33.51 ± 9.33 kPa to 43.18 ± 12.08 kPa at the microscale (P = 0.002). After immobilization for 8 weeks, a greater number of cells were observed by histology to be aggregated within the nucleus pulposus. Collagen II (P = 0.007) and aggrecan (P = 0.003) gene expression were downregulated whereas collagen I (P = 0.002), MMP-3 (P < 0.001), MMP-13 (P < 0.001) and ADAMTs-4 (P < 0.001) were upregulated. Immobilization not only influenced individual collagen fibrils at the nanoscale, but also altered the micro-biomechanics and cell response in the nucleus pulposus. These results suggest that significant changes occur in intervertebral discs at both scales after immobilization, a situation about which clinicians should be aware when immobilization has to be used clinically.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2020.102824DOI Listing

Publication Analysis

Top Keywords

nucleus pulposus
24
elastic modulus
12
collagen fibrils
12
immobilization
9
nano micro
8
modulus collagen
8
fibrils nucleus
8
pulposus nanoscale
8
gene expression
8
nucleus
6

Similar Publications

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

A Human Progenitor Cell-Based Tissue Engineered Intervertebral Disc.

Tissue Eng Part A

September 2025

Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Cell and tissue engineering therapies provide promise for regenerating damaged intervertebral disc (IVD) tissue and resolving the low back pain that often accompanies it. However, these treatments remain experimental and unavailable for patients. Furthermore, the large body of work characterizing and utilizing mesenchymal stromal cells (MSCs) for these applications has, unfortunately, not resulted in any FDA-approved spinal therapies.

View Article and Find Full Text PDF

Hydrogel adhesives with a hydrodynamically induced liquid-solid transition for annular fissure sealing and inflammation modulation following microdiscectomy.

J Orthop Translat

November 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, Interdisciplinary Innovation Center for Nanomedicine, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow Universi

Background: Intervertebral disc (IVD) herniation is a major cause of low back pain and disability, with microdiscectomy being the standard surgical treatment. However, microdiscectomy fails to address annulus fibrosus (AF) defects, increasing the risk of recurrent herniation. Current therapeutic strategies for this condition remain limited in efficacy.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the effect of transforaminal epidural steroid injection (TFESIs) for patients with lumbosacral radiculopathy secondary to a lumbosacral herniated nucleus pulposus (HNP).

Design: A retrospective review of adult patients who received a fluoroscopically guided TSNRI for a HNP was performed. Patient Reported Outcome Measurement Information System (PROMIS) domains of Physical Function (PF), Pain Interference (PI), and Depression (D) were collected at baseline and post-procedure short-term (1-3 months post-procedure) and long-term follow-up (6-12 months post-procedure).

View Article and Find Full Text PDF