98%
921
2 minutes
20
Reactive molecular oxygen (O) plays important roles in bioenergetics and metabolism and is implicated in biochemical pathways underlying angiogenesis, fertilization, wound healing and regeneration. Here we describe how to use the scanning micro-optrode technique (SMOT) to measure extracellular fluxes of dissolved O. The self-referencing O-specific micro-optrode (also termed micro-optode and optical fiber microsensor) is a tapered optical fiber with an O-sensitive fluorophore coated onto the tip. The O concentration is quantified by fluorescence quenching of the fluorophore emission upon excitation with blue-green light. The micro-optrode presents high spatial and temporal resolutions with improved signal-to-noise ratio (in the picomole range). In this protocol, we provide step-by-step instructions for micro-optrode calibration, validation, example applications and data analysis. We describe how to use the technique for cells (Xenopus oocyte), tissues (Xenopus epithelium and rat cornea), organs (Xenopus gills and mouse skin) and appendages (Xenopus tail), and provide recommendations on how to adapt the approach to different model systems. The basic, user-friendly system presented here can be readily installed to reliably and accurately measure physiological O fluxes in a wide spectrum of biological models and physiological responses. The full protocol can be performed in ~4 h.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980673 | PMC |
http://dx.doi.org/10.1038/s41596-019-0231-x | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFBMC Ophthalmol
September 2025
Department of Ophthalmology, Institute of Medicine, Tribhuvan University, B.P Koirala Lions Centre For Ophthalmic Studies, Kathmandu, Nepal.
Background: To evaluate the ganglion cell complex thickness in patients taking oral hydroxychloroquine.
Methods: In this hospital-based, cross-sectional, non-interventional, comparative study, 87 eyes of 87 patients taking hydroxychloroquine were recruited. All the patients underwent complete ophthalmological evaluation along with dilated fundus examination.
Objective: Previous studies of nerve distribution in the orofacial complex have focused primarily on the anatomic courses of nerve fibers and have rarely addressed the density of nerve distribution. The nerve distribution in the mandible was described in only one report which showed an increase in nerve distribution density moving from the alveolar crest toward the inferior alveolar nerve. However, no previous reports have focused on the nerve distribution density in the maxilla.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.
Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.
Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.
ACS Macro Lett
September 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Poly(3-hexylthiophene) (P3HT)-based complex topological copolymers have attracted a great deal of attention for their unique electrical and optical properties. In this contribution, the P3HT-based Janus fibers with controlled lengths were innovatively prepared by sequential crystallization-driven self-assembly (CDSA) of poly(--butylstyrene)--polyisoprene--poly(3-hexylthiophene) (PBS--PI--P3HT) triblock copolymer, cross-linking of the interlayer PI region, and dissociation of fibers in good solvent. The comprehensive characterizations showed that the PBS/P3HT Janus fibers have nearly half the width of PBS--PI--P3HT fibers and fiber lengths close to or slightly shorter than those of PBS--PI--P3HT fibers, indicating that the Janus fibers with adjustable lengths could be prepared in a large window range.
View Article and Find Full Text PDF