Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The application of robotic devices in providing physiotherapies to post-stroke patients and people suffering from incomplete spinal cord injuries is rapidly expanding. It is crucial to provide valid rehabilitation for people who are experiencing abnormality in their gait performance; therefore, design and development of newer robotic devices for the purpose of facilitating patients' recovery is being actively researched. In order to advance the traditional gait treatment among patients, exoskeletons and orthoses were introduced over the last two decades. This article presents a thorough review of existing robotic gait rehabilitation devices. The latest advancements in the mechanical design, types of control and actuation are also covered. The study comprehends discussions on robotic rehabilitation devices developed both for the training on treadmill and over-ground training. The assist-as-needed strategy for the gait training is particularly emphasized while reviewing various control strategies applied to these robotic devices. This study further reviews experimental investigations and clinical assessments of different control strategies and mechanism designs of robotic gait rehabilitation devices using experimental and clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411919898293DOI Listing

Publication Analysis

Top Keywords

gait rehabilitation
12
control strategies
12
robotic devices
12
rehabilitation devices
12
mechanical design
8
robotic gait
8
robotic
7
gait
6
devices
6
rehabilitation
5

Similar Publications

PurposeThis study aimed to test a robotic supine gait training (RSGT) device's safety when treating children and adolescents with a variety of diagnoses, to ensure their safety and the standardization of clinical practices.MethodsThis retrospective observational study included 280 patients who underwent one or more treatment sessions with a RSGT device (DPA Med) at the Nantes Regional Children's and Adolescent Health Care Center. These patients' medical files, indexed in the digital medical file manager program, were examined in search of evidence of adverse events presumably associated with the treatment.

View Article and Find Full Text PDF

Measurable neuromotor control deficits during functional task performance could provide objective criteria to aid in concussion diagnosis. However, many tools which measure these constructs are unidimensional and not clinically feasible. The purpose of this study was to assess the classification accuracy of a machine learning model using features measured by a clinically feasible movement-based assessment system (Mizzou Point-of-care Assessment System (MPASS) between athletes with and without concussion.

View Article and Find Full Text PDF

The primary purpose of this study was to determine the preoperative predictors of gait biomechanics 6 months after unilateral total knee arthroplasty (TKA). There were 126 participants (age 64.4 ± 7.

View Article and Find Full Text PDF

Additive Manufactured Programmable Scaffold Sensor Based on Triply Periodic Minimal Surfaces for Broad-Spectrum Pressure Detection.

ACS Appl Mater Interfaces

September 2025

DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.

Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.

View Article and Find Full Text PDF

Age-related differences in the step-to-step control of foot placement during prolonged walking.

J Biomech

August 2025

Lampe Joint Department of Biomedical Engineering, UNC Chapel Hill & NC State University, Chapel Hill, NC, USA. Electronic address:

Walking is essential for maintaining independence and quality of life, yet aging may impair the neuromuscular function required for stable gait over time. This study sought to quantify age-related differences in step-to-step control during prolonged walking using detrended fluctuation analysis (DFA). We hypothesized that step-to-step changes in step length and step width would exhibit reduced temporal persistence over time, with more pronounced effects in older than in younger adults.

View Article and Find Full Text PDF