IEEE Trans Neural Syst Rehabil Eng
June 2025
This paper presents an adaptive Assist-as-Needed (AAN) control framework for a shoulder rehabilitation robot enhanced by a Virtual Biomechanical Shoulder Robot Model (VBSRM) and an online stiffness adaptation module. The proposed system adapts support levels dynamically based on user interaction and motor effort, ensuring both safety and active participation during rehabilitation training. The VBSRM is first calibrated to each user's anthropometric dimensions and used to estimate joint torques during movement.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2025
In rehabilitation robotics, optimizing energy consumption and high interaction forces is essential to prevent unnecessary muscle fatigue and excessive joint loading as they often cause an inefficient trajectory planning and disrupt natural movement patterns. Stroke patients frequently exhibit asymmetrical muscle activation and impaired neuromuscular coordination, making it necessary to design a system that adapts to their specific motor limitations with energy-efficient and excessive torque control. This study presents a reinforcement learning-based trajectory optimization framework for a 3-DOF ankle rehabilitation robot, integrating musculoskeletal modeling, transactive energy and real-time physiological feedback to generate adaptive rehabilitation trajectories.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
December 2024
Reported in this paper is a cutting-edge computational investigation into the influence of geometric characteristics on abdominal aortic aneurysm (AAA) rupture risk, beyond the traditional measure of maximum aneurysm diameter. A Comprehensive fluid-structure interaction (FSI) analysis was employed to assess risk factors in a range of patient scenarios, with the use of three-dimensional (3D) AAA models reconstructed from patient-specific aortic data and finite element method. Wall shear stress (WSS), and its derivatives such as time-averaged WSS (TAWSS), oscillatory shear index (OSI), relative residence time (RRT) and transverse WSS (transWSS) offer insights into the force dynamics acting on the AAA wall.
View Article and Find Full Text PDFBiomech Model Mechanobiol
February 2025
Self-expandable stents manufactured from nitinol alloys are commonly utilized alongside traditional balloon-expandable stents to provide scaffolding to stenosed arteries. However, a significant limitation hampering stent efficacy is restenosis, triggered by neointimal hyperplasia and resulting in the loss of gain in lumen size, post-intervention. In this study, a nonlinear finite element model was developed to simulate stent crimping and expansion and its interaction with the surrounding vessel in the presence of a plaque.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Extracranial carotid artery aneurysms (ECCA) lead to rupture and neurologic symptoms from embolisation, with potentially fatal outcomes. Investigating the biomechanical behaviour of EECA with blood flow dynamics is crucial for identifying regions more susceptible to rupture. A coupled three-dimensional (3D) Windkessel-framework and hyperelastic fluid-structure interaction (FSI) analysis of ECCAs with patient-specific geometries, was developed in this paper with a particular focus on hemodynamic parameters and the arterial wall's biomechanical response.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2023
A human aorta from a female donor affected by Klippel-Trenaunay syndrome was retrieved during a surgery for organ donation for transplant. The aorta was preserved in refrigerated Belzer UW organ preservation solution and tested within a few hours for mechanical characterization with and without vascular smooth muscle activation. KCl and Noradrenaline were used as vasoactive agents in bubbled Krebs-Henseleit buffer solution at 37 °C.
View Article and Find Full Text PDFLarge aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
August 2023
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection.
View Article and Find Full Text PDFComput Methods Programs Biomed
April 2023
Background And Objective: In this paper we investigate twelve multi-directional/topological wall shear stress (WSS) derived metrics and their relationships with the formation of coronary plaques in both computational fluid dynamics (CFD) and dynamic fluid-structure interaction (FSI) frameworks. While low WSS is one of the most established biomechanical markers associated with coronary atherosclerosis progression, alone it is limited. Multi-directional and topological WSS derived metrics have been shown to be important in atherosclerosis related mechanotransduction and near-wall transport processes.
View Article and Find Full Text PDFCoronary optical coherence tomography (OCT) is an intravascular, near-infrared light-based imaging modality capable of reaching axial resolutions of 10-20 µm. This resolution allows for accurate determination of high-risk plaque features, such as thin cap fibroatheroma; however, visualization of morphological features alone still provides unreliable positive predictive capability for plaque progression or future major adverse cardiovascular events (MACE). Biomechanical simulation could assist in this prediction, but this requires extracting morphological features from intravascular imaging to construct accurate three-dimensional (3D) simulations of patients' arteries.
View Article and Find Full Text PDFIn this paper, we present a complete workflow for the biomechanical analysis of atherosclerotic plaque in the coronary vasculature. With atherosclerosis as one of the leading causes of global death, morbidity and economic burden, novel ways of analyzing and predicting its progression are needed. One such computational method is the use of fluid-structure interaction (FSI) to analyze the interaction between the blood flow and artery/plaque domains.
View Article and Find Full Text PDFA fluid-structure interaction-based biomechanical model of the entire left anterior descending coronary artery is developed from in vivo imaging via the finite element method in this paper. Included in this investigation is ventricle contraction, three-dimensional motion, all angiographically visible side branches, hyper/viscoelastic artery layers, non-Newtonian and pulsatile blood flow, and the out-of-phase nature of blood velocity and pressure. The fluid-structure interaction model is based on in vivo angiography of an elite athlete's entire left anterior descending coronary artery where the influence of including all alternating side branches and the dynamical contraction of the ventricle is investigated for the first time.
View Article and Find Full Text PDFProc Inst Mech Eng H
May 2020
The application of robotic devices in providing physiotherapies to post-stroke patients and people suffering from incomplete spinal cord injuries is rapidly expanding. It is crucial to provide valid rehabilitation for people who are experiencing abnormality in their gait performance; therefore, design and development of newer robotic devices for the purpose of facilitating patients' recovery is being actively researched. In order to advance the traditional gait treatment among patients, exoskeletons and orthoses were introduced over the last two decades.
View Article and Find Full Text PDFProc Inst Mech Eng H
December 2017
There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients.
View Article and Find Full Text PDFClin Biomech (Bristol)
May 2017
Comput Methods Biomech Biomed Engin
May 2017
Background And Objectives: While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations.
Methods: Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously.
Assist Technol
September 2019
This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design.
View Article and Find Full Text PDFRobot-assisted physical gait therapy is gaining recognition among the rehabilitation engineering community. Several robotic orthoses for the treatment of gait impairments have been developed during the last 2 decades, many of which are designed to provide physical therapy to a single joint of the lower limb; these are reviewed here. The mechanism design and actuation concepts for these single joint robotic orthoses are discussed.
View Article and Find Full Text PDF