98%
921
2 minutes
20
The type 2 cytokines IL-5, IL-13, and IL-4 play an important role in the induction and progression of asthma. According to the Global Initiative for Asthma guidelines, blood eosinophil numbers are one marker that helps to guide treatment decisions in patients suffering from severe forms of asthma. Effects of type 2 cytokines were analyzed, alone or in combination, on eosinophils in blood and other compartments and on the development of asthma symptoms. C57BL/6 mice received a single intranasal application of equimolar amounts of IL-5, IL-13, and IL-4, alone or in combination. Numbers, activation state, and migratory behavior of eosinophils in bone marrow (BM), blood, lung, and bronchoalveolar lavage as well as airway hyperresponsiveness and goblet cell metaplasia were evaluated. Only IL-13 was associated with airway eosinophilia, development of airway hyperresponsiveness, and goblet cell metaplasia, without any synergistic effects. IL-5 increased the number of eosinophils in BM and lung tissue but failed to affect structural changes. IL-4 had similar, but weaker, effects to IL-13. Cytokine combinations synergistically affected eosinophils but failed to enhance IL-13-driven effects on lung function or goblet cell metaplasia. IL-5 and IL-13 markedly increased eosinophil numbers locally in lung and airways and distally in blood and BM, whereas IL-5 and IL-4 only increased eosinophils in lung and BM. IL-13 together with IL-4 failed to demonstrate any synergistic effect. These insights into single and combined effects of type 2 cytokines on disease-driving mechanisms could improve understanding of the impact and effectiveness of new therapies in asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1901116 | DOI Listing |
Nat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology; Taikang Center for Life and Medical Sciences; State Key Laboratory of Virology; Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, Hubei, 430071,
Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.
View Article and Find Full Text PDFNat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFImmunol Cell Biol
September 2025
Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India.
The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.
View Article and Find Full Text PDFJ Virol
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).
View Article and Find Full Text PDF