Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to elucidate whether 1-methylcyclopropene (1-MCP) treatment delays the fruit softening mechanism associated with the fruit quality of the newly released apple cultivars "Summer King" and "Green Ball" during cold storage. For both cultivars, the fruit treated with 1-MCP exhibited lower internal ethylene concentration, higher firmness, and higher titratable acidity relative to the control fruit, in association with less fruit softening. In addition, the treated fruit significantly delayed fresh weight loss and reduction of soluble solids content, especially in "Green Ball." Moreover, slower degradation of cell wall components (water-soluble pectin, sodium carbonate-soluble pectin, hemicellulose, and cellulose) was also observed in the treated fruit in comparison to the control fruit. Similarly, the enzymatic activities (of polygalacturonase, pectin methylesterase, cellulase, β-galactosidase, and α-L-arabinofuranosidase) that cause cell wall degradation were relatively lower in the treated fruit than in the control fruit for both cultivars, which was further proved by transcriptional analysis of the genes encoding the enzymes. Overall, the results suggested that the usage of 1-MCP is useful to delay fruit softening of the two cultivars during cold storage by delaying the degradation of cell wall components and enzymatic activities of cell wall hydrolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882424PMC
http://dx.doi.org/10.3389/fpls.2019.01513DOI Listing

Publication Analysis

Top Keywords

cell wall
20
cold storage
12
fruit softening
12
control fruit
12
treated fruit
12
fruit
11
fruit quality
8
"green ball"
8
degradation cell
8
wall components
8

Similar Publications

Purpose: Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare cancer susceptibility syndrome exclusively attributable to pathogenic variants in FH (HGNC:3700). This paper quantitatively weights the phenotypic context (PP4/PS4) of such very rare variants in FH.

Methods: We collated clinical diagnostic testing data on germline FH variants from 387 individuals with HLRCC and 1,780 individuals with renal cancer, and compared the frequency of 'very rare' variants in each phenotypic cohort against 562,295 population controls.

View Article and Find Full Text PDF

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

Background: Pulmonary Hypertension (PH) is a significant contributor to cardiac mortality in Dilated Cardiomyopathy (DCM) patients. Inflammatory processes and oxidative stress play pivotal roles in the advancement of Pulmonary Hypertension (PH). The Monocyte-to-High-- Density-Lipoprotein Cholesterol Ratio (MHR), a newly identified biomarker indicative of inflammatory and oxidative stress, has not been extensively researched in the context of pulmonary hypertension, especially within the scope of dilated cardiomyopathy.

View Article and Find Full Text PDF

OsPIL1 Differentially Modulates Rice Blast Resistance Through Integrating Light or Darkness During Magnaporthe oryzae Infection.

Plant Cell Environ

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China.

Light and darkness are critical environmental factors that regulate plant immune responses. OsPIL1, a phytochrome-interacting factor-like protein, has been implicated in rice immunity against Magnaporthe oryzae, although its underlying mechanism remains unclear. This study aimed to dissect how OsPIL1 integrates light or darkness to modulate rice immunity.

View Article and Find Full Text PDF