Cryptotanshinone enhances neurite outgrowth and memory via extracellular signal-regulated kinase 1/2 signaling.

Food Chem Toxicol

Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 604-714, Republic of Korea. Electronic address:

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurite outgrowth is important process in synaptic formation and neuronal development. Many previous studies reported that natural compounds as well as neurotrophins induce neurite outgrowth through various signaling pathways. In this study, we tested the effect of cryptotanshinone (CPT), a constituent of Salvia miltiorrhiza Bunge, on neurite outgrowth using neuro2a cell line, a mouse neuroblastoma cell line. And then, we examined the effect of CPT on learning and memory. We first found that CPT facilitated neurite outgrowth in a concentration-dependent manner. Although CPT induced MTT reduction, CPT did not induce LDH release. Moreover, CPT suppressed cell proliferation. CPT increased ERK1/2 phosphorylation and ERK1/2 inhibitor blocked CPT-facilitated neurite outgrowth. CPT also enhanced learning and memory without affecting basal sensory conditions and increased ERK1/2 phosphorylation in the hippocampus in a dose-dependent manner. These results demonstrate that CPT facilitates neurite outgrowth and enhances learning and memory, which may be mediated by facilitating ERK1/2 signal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2019.111011DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
28
learning memory
12
cpt
9
increased erk1/2
8
erk1/2 phosphorylation
8
neurite
7
outgrowth
7
cryptotanshinone enhances
4
enhances neurite
4
memory
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

Stable apelin-13 analogues promote cell proliferation, differentiation and protect inflammation induced cell death.

Mol Cell Neurosci

September 2025

Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:

Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.

View Article and Find Full Text PDF

POU6F1 promote lumbar motor circuit reorganization following spinal cord injury.

Neurobiol Dis

September 2025

Mudanjiang Collaborative Innovation Center for development and application of Northern Medicine Resources, Mudanjiang, PR China; Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China. Electronic address:

Spinal cord injury (SCI) causes irreversible motor deficits due to disrupted lumbar circuitry. However, transcriptional mechanisms in distal lumbar circuits are poorly understood. We identify POU6F1 as a critical transcriptional regulator in spinal lumbar segment (SLS, L3-L5) motor circuit regeneration.

View Article and Find Full Text PDF