98%
921
2 minutes
20
We present a multi-instrument experiment to study the effects of tropospheric thunderstorms on the mesopause region and the lower ionosphere. Sodium (Na) lidar and ionospheric observations by two digital ionospheric sounders are used to study the variation in the neutral metal atoms and metallic ions above thunderstorms. An enhanced ionospheric sporadic E layer with a downward tidal phase is observed followed by a subsequent intensification of neutral Na number density with an increase of 600 cm in the mesosphere. In addition, the Na neutral chemistry and ion-molecule chemistry are considered in a Na chemistry model to simulate the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms. The enhanced Na layer in the simulation obtained by using the ionospheric observation as input is in agreement with the Na lidar observation. We find that the intensification of metallic layered phenomena above thunderstorms is associated with the atmospheric tides, as a result of the troposphere-mesosphere-ionosphere coupling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884582 | PMC |
http://dx.doi.org/10.1038/s41598-019-54450-1 | DOI Listing |
RSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFSci Total Environ
September 2025
UCD School of Biosystems and Food Engineering, University College Dublin, Ireland; BiOrbic Bioeconomy, SFI Research Centre, Ireland.
Integrated crop-livestock systems combine feed production with animal production as separate, but interconnected operations. This study presents the first Life Cycle Assessment (LCA) of a large scale, integrated, organic egg production system in Brazil and the first worldwide assessment of a large-scale integrated crop-poultry system. This research provides insights into eco-efficiency, offering guidance for sustainable practices in Brazil and beyond.
View Article and Find Full Text PDFInorg Chem
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, PR China.
This study proposes an innovative ultrasonic-assisted ClO oxidative leaching (UCL) process for Zn, In, and Ge synergistic recovery from zinc smelting dust (ZSD). Laser ablation inductively coupled plasma time-of-flight mass spectrometry reveals the synergistic association of In/Ge and Cu in sphalerite, which breaks through the limitations of the traditional characterization techniques for trace element analysis in ZSD. Through appropriate process parameters(0.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Hubei Key Laboratory of Optical Information and Pattern Recognition, Schoo
The tunable photoluminescence (PL) response of Bi3+/Sb3+ doped zero-dimensional perovskite [(CH3)3S]2SnCl6 via pressure-induced structure evolution is investigated using high-pressure techniques and density-functional theory calculations. In contrast to the rigidification of [SnCl6]2-/[SbCl6]3- octahedra by Sb3+ ions, Bi3+ ions trigger the distortion of the [SnCl6]2-/[BiCl6]3- octahedra at a relatively lower pressure, and even a cubic-to-trigonal phase transition of Bi3+ singly doped [(CH3)3S]2SnCl6 occurs at higher pressures due to its pressure sensitivity, wherein, the organic (CH3)3S+ chains enhance the flexibility of [(CH3)3S]2SnCl6 host structure. For Bi3+/Sb3+ doubly doped [(CH3)3S]2SnCl6, the two metal ion dopants interact with each other, accompanied by synergistic lattice distortion, resulting in novel self-trapped exciton emission behaviors in the host that is distinct from the single-ion doping effects.
View Article and Find Full Text PDFUltrason Sonochem
August 2025
Donghai Laboratory, Zhoushan 316021, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:
Hydrodynamic cavitation offers a promising technological platform for diverse industrial applications, including water treatment and chemical process intensification, and holds significant potential for widespread adoption in future advanced processing systems. This study investigates the disinfection efficacy of a novel Cylindrical Rotational Hydrodynamic Cavitation Reactor (CRHCR) and elucidates the underlying mechanism of Escherichia coli (E. coli) inactivation induced by hydrodynamic cavitation.
View Article and Find Full Text PDF