Color-Based Optical Detection of Glass Transitions on Microsecond Timescales Enabled by Exciplex Dynamics.

Adv Mater

Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands.

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Every measurement technique operates on a given timescale and measurements using emissive small molecule sensors are no exception. A family of luminescent sensors providing first optical characterization of dynamic phenomena in polymers at a timescale of several microseconds is described. This performance originates from the dynamics manifested in the excited state of the sensor molecules where diffusioncontrolled events select the emission color while radiative phenomena define the global operation timescale. Since the mechanism responsible for signal generation is confined to the short lived excited state of emissive probe, it is possible observe an unprecedented link between the timescale of sensory action and that of photoluminescence. An application of this new methodology is demonstrated by performing general, short timescale detection of glass transitions in a temperature ranges precluding the informative range of conventional techniques by tens of degrees.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201906764DOI Listing

Publication Analysis

Top Keywords

detection glass
8
glass transitions
8
excited state
8
timescale
5
color-based optical
4
optical detection
4
transitions microsecond
4
microsecond timescales
4
timescales enabled
4
enabled exciplex
4

Similar Publications

Excitatory cortical neurons from CDKL5 deficiency disorder patient-derived organoids show early hyperexcitability not identified in neurogenin2 induced neurons.

Neurobiol Dis

September 2025

F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.

CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation.

View Article and Find Full Text PDF

Distribution and molecular characterization of integron classes from and isolates in Sulaymaniyah province of Iraq.

Microbiol Spectr

September 2025

Medical Laboratory Department, College of Health and Medical Technology, Sulaimani Polytechnic University, Sulaymaniyah, Iraq.

Unlabelled: The environmental pollution from the misuse of antimicrobial drugs is fueling selection pressure in bacteria, thereby exacerbating the threat to global health. In Iraq, the situation is made worse by the poor implementation of the World Health Organization's Global Antimicrobial Resistance and Use Surveillance System (WHO-GLASS). Consequently, this study aimed to increase surveillance of the spread of antimicrobial resistance in Sulaymaniyah, Iraq.

View Article and Find Full Text PDF

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.

View Article and Find Full Text PDF

In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.

View Article and Find Full Text PDF