Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes.
View Article and Find Full Text PDFJ Am Chem Soc
December 2022
Mechanophores are powerful molecular tools used to track bond rupture and characterize mechanical damage in polymers. The majority of mechanophores are known to respond to external stresses, and we report in this study the first precedent of a mechanochemical response to internal, residual stresses that accumulate during polymer vitrification. While internal stress is intrinsic to polymers that can form solids, we demonstrate that it can dramatically affect the mechanochemistry of spiropyran probes and alter their intramolecular isomerization barriers by up to 70 kJ mol.
View Article and Find Full Text PDFWhile Mn-catalyzed (de)hydrogenation of carbonyl derivatives has been well established, the reactivity of Mn hydrides with olefins remains very rare. Herein, we report a Mn(I) pincer complex that effectively promotes site-controlled transposition of olefins. This reactivity is shown to emerge once the N-H functionality within the Mn/NH bifunctional complex is suppressed by alkylation.
View Article and Find Full Text PDFHomogeneously catalyzed reactions often make use of additives and promotors that affect reactivity patterns and improve catalytic performance. While the role of reaction promotors is often discussed in view of their chemical reactivity, we demonstrate that they can be involved in catalysis indirectly. In particular, we demonstrate that promotors can adjust the thermodynamics of key transformations in homogeneous hydrogenation catalysis and enable reactions that would be unfavorable otherwise.
View Article and Find Full Text PDFAutomation and microfluidic tools potentially enable efficient, fast, and focused reaction development of complex chemistries, while minimizing resource- and material consumption. The introduction of automation-assisted workflows will contribute to the more sustainable development and scale-up of new and improved catalytic technologies. Herein, the application of automation and microfluidics to the development of a complex asymmetric hydrogenation reaction is described.
View Article and Find Full Text PDFPolymer glasses have an irregular structure. Among the causes for such complexity are the chemically distinct chain end groups that are the most abundant irregularities in any linear polymer. In this work, we demonstrate that chain end induced defects allow polymer glasses to create confined environments capable of hosting small emissive molecules.
View Article and Find Full Text PDFOrganometallics
March 2021
Alkoxycarbonylations are important and versatile reactions that result in the formation of a new C-C bond. Herein, we report on a new and halide-free alkoxycarbonylation reaction that does not require the application of an external carbon monoxide atmosphere. Instead, manganese carbonyl complexes and organo(alkoxy)borate salts react to form an ester product containing the target C-C bond.
View Article and Find Full Text PDFAny catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high.
View Article and Find Full Text PDFCatalytic reductions of carbonyl-containing compounds are highly important for the safe, sustainable, and economical production of alcohols. Herein, we report on the efficient transfer hydrogenation of ketones catalyzed by a highly potent Mn(I)-NHC complex. Mn-NHC is practical at metal concentrations as low as 75 ppm, thus approaching loadings more conventionally reserved for noble metal based systems.
View Article and Find Full Text PDFEvery measurement technique operates on a given timescale and measurements using emissive small molecule sensors are no exception. A family of luminescent sensors providing first optical characterization of dynamic phenomena in polymers at a timescale of several microseconds is described. This performance originates from the dynamics manifested in the excited state of the sensor molecules where diffusioncontrolled events select the emission color while radiative phenomena define the global operation timescale.
View Article and Find Full Text PDFThe catalytic asymmetric transfer hydrogenation (ATH) of ketones is a powerful methodology for the practical and efficient installation of chiral centers. Herein, we describe the synthesis, characterization, and catalytic application of a series of manganese complexes bearing simple chiral diamine ligands. We performed an extensive experimental and computational mechanistic study and present the first detailed experimental kinetic study of Mn-catalyzed ATH.
View Article and Find Full Text PDFPhotoluminescent compounds can undergo various structural changes upon interaction with light. When these changes manifest themselves in the excited state, the resulting emitters can obtain a sensory function. In this work, we designed coordination compounds that can vary their emission color in response to thermal and mechanical stimuli.
View Article and Find Full Text PDFJ Am Chem Soc
February 2019
A recently discovered photodecarboxylase from Chlorella variabilis NC64A ( CvFAP) bears the promise for the efficient and selective synthesis of hydrocarbons from carboxylic acids. CvFAP, however, exhibits a clear preference for long-chain fatty acids thereby limiting its broad applicability. In this contribution, we demonstrate that the decoy molecule approach enables conversion of a broad range of carboxylic acids by filling up the vacant substrate access channel of the photodecarboxylase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2018
Structural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design them rationally. Herein we present a practical methodology capable of resolving the complex mechanical behavior and tracking mechanical impact in discrete phases of segmented polyurethane-a typical example of a structurally complex polymer.
View Article and Find Full Text PDFThe macrocyclic ligand conformational behavior in solution, solid-state structures and the photophysical properties of copper(I) cationic and neutral mononuclear complexes supported by tetradentate N, N'-dialkyl-2,11-diaza[3.3](2,6)-pyridinophane ligands N4 (R = H, Me, Bu, Bu, Pent, Pr, Ts) were investigated in detail. Steric properties of the alkyl group at the axial amine in the N4 ligand were found to strongly affect the conformational preferences and dynamic behavior in solution.
View Article and Find Full Text PDFCatalytic hydrogenation and dehydrogenation reactions form the core of the modern chemical industry. This vast class of reactions is found in any part of chemical synthesis starting from the milligram-scale exploratory organic chemistry to the multi-ton base chemicals production. Noble metal catalysis has long been the key driving force in enabling these transformations with carbonyl substrates and their nitrogen-containing counterparts.
View Article and Find Full Text PDFWe devised a co-organizing synthesis by targeting metastable assemblies. Applying a photo-cleavage reaction to the pre-stabilized self-assembled nanostructures, we could successfully place physical constraints on the initiating stage of the molecular co-assembly (CA) process for exotic nanostructures that are away from the thermodynamic minima.
View Article and Find Full Text PDFDynamic phosphorescent copper complex incorporated into the main chain of polyurethanes produces a facile and reversible response to tensile stress. In contrast to common deformation sensors, the applied stress does not lead to bond scission, or alters the phosphor structure. The suppression of dynamics responsible for the nonradiative relaxation is found to be the major pathway governing stress response.
View Article and Find Full Text PDFBis-N-heterocyclic carbene (NHC) aminopincer ligands were successfully applied for the first time in the catalytic hydrogenation of esters. We have isolated and characterized a well-defined catalyst precursor as a dimeric [Ru2(L)2Cl3]PF6 complex and studied its reactivity and catalytic performance. Remarkable initial activities up to 283,000 h(-1) were achieved in the hydrogenation of ethyl hexanoate at only 12.
View Article and Find Full Text PDFThe catalytic reduction of carboxylic acid derivatives has witnessed a rapid development in recent years. These reactions, involving molecular hydrogen as the reducing agent, can be promoted by heterogeneous and homogeneous catalysts. The milestone achievements and recent results by both approaches are discussed in this Review.
View Article and Find Full Text PDF