Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melanoma is one of the most aggressive solid tumors and includes a stromal microenvironment that regulates cancer growth and progression. The components of stromal microenvironment such as fibroblasts, fibroblast aggregates and cancer-associated fibroblasts (CAFs) can differently influence the melanoma growth during its distinct stages. In this work, we have developed and studied a stromal microenvironment model, represented by fibroblasts, proto-myofibroblasts, myofibroblasts and aggregates of inactivated myofibroblasts, such as spheroids. In particular, we have generated proto-myofibroblasts from primary cutaneous myofibroblasts. The phenotype of proto-myofibroblasts is characterized by a dramatic reduction of α-smooth muscle actin (α-SMA) and cyclooxygenase-2 (COX-2) protein levels, as well as an enhancement of cell viability and migratory capability compared with myofibroblasts. Furthermore, proto-myofibroblasts display the mesenchymal marker vimentin and less developed stress fibers, with respect to myofibroblasts. The analysis of crosstalk between the stromal microenvironment and A375 or A2058 melanoma cells has shown that the conditioned medium of proto-myofibroblasts is cytotoxic, mainly for A2058 cells, and dramatically reduces the migratory capability of both cell lines compared with the melanoma-control conditioned medium. An array analysis of proto-myofibroblast and melanoma cell-conditioned media suggests that lower levels of some cytokines and growth factors in the conditioned medium of proto-myofibroblasts could be associated with their anti-tumor activity. Conversely, the conditioned media of melanoma cells do not influence the cell viability, outgrowth, and migration of proto-myofibroblasts from spheroids. Interestingly, the conditioned medium of proto-myofibroblasts does not alter the cell viability of both BJ-5ta fibroblast cells and myofibroblasts. Hence, proto-myofibroblasts could be useful in the study of new therapeutic strategies targeting melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912587PMC
http://dx.doi.org/10.3390/cells8111435DOI Listing

Publication Analysis

Top Keywords

stromal microenvironment
20
conditioned medium
16
melanoma cells
12
cell viability
12
medium proto-myofibroblasts
12
proto-myofibroblasts
9
analysis crosstalk
8
migratory capability
8
myofibroblasts proto-myofibroblasts
8
melanoma
7

Similar Publications

The combination of targeted therapies and immunotherapies for advanced and metastatic sarcomas has been proposed owing to the enhanced effect of antiangiogenic therapies on the tumor microenvironment. We found eight studies published to date assessing the effectiveness of combined multitargeted vascular endothelial growth factor (VEGF)-tyrosine kinase inhibitors with immune checkpoint inhibitors (ICIs) in sarcoma. It is difficult to draw conclusions owing to limited data and primarily single-arm studies, although initial literature appears promising and requires further study.

View Article and Find Full Text PDF

This review aims to examine differences in the immune microenvironment between low-risk and high-risk myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Furthermore, it explores the impact of immune cell imbalance, abnormal cytokine levels, and stromal cell impairment on disease progression and prognosis. Additionally, the review analyzes the immune mechanisms underlying the transformation of high-risk MDS to AML.

View Article and Find Full Text PDF

Cellular Senescence and Immunosenescence in Melanoma: Insights From the Tumor Microenvironment.

Cancer Med

September 2025

Department of Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Background: Melanoma is one of the most immunogenic malignancies, yet resistance to immune checkpoint inhibitors (ICIs) remains a major obstacle to durable therapeutic success. Emerging evidence indicates that aging-related processes, including cellular senescence and immunosenescence, can reshape the tumor microenvironment (TME) to favor immune evasion and disease progression. Senescent melanoma and stromal cells secrete a senescence-associated secretory phenotype (SASP) that alters immune cell recruitment and function, while immunosenescence leads to diminished cytotoxic responses and the accumulation of dysfunctional or suppressive immune subsets.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) associated with usual interstitial pneumonia (UIP) harbours distinct features compared to lung adenocarcinoma without UIP. Therefore, we aimed to characterise the tumour microenvironment of LUAD with UIP by focusing on cancer-associated fibroblasts (CAFs) and stromal composition. Immunohistochemistry was performed on 32 LUAD samples (16 each with and without UIP) to evaluate CAF marker expression and lymphocyte infiltration.

View Article and Find Full Text PDF

Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.

View Article and Find Full Text PDF