98%
921
2 minutes
20
Non-alcoholic steatohepatitis (NASH) has become a major risk factor for hepatocellular cancer (HCC) due to the worldwide increasing prevalence of obesity. However, the pathophysiology of NASH and its progression to HCC is incompletely understood. Thus, the aim of this study was to generate a model specific NASH-derived HCC cell line. A murine NASH-HCC model was conducted and the obtained cancer cells (N-HCC25) were investigated towards chromosomal aberrations, the expression of cell type-specific markers, dependency on nutrients, and functional importance of mTOR. N-HCC25 exhibited several chromosomal aberrations as compared to healthy hepatocytes. Hepatocytic (HNF4), EMT (Twist, Snail), and cancer stem cell markers (CD44, EpCAM, CK19, Sox9) were simultaneously expressed in these cells. Proliferation highly depended on the supply of glucose and FBS, but not glutamine. Treatment with a second generation mTOR inhibitor (KU-0063794) resulted in a strong decrease of cell growth in a dose-dependent manner. In contrast, a first generation mTOR inhibitor (Everolimus) only slightly reduced cell proliferation. Cell cycle analyses revealed that the observed growth reduction was most likely due to G/G cell cycle arrest. These results indicate that N-HCC25 is a highly proliferative HCC cell line from a NASH background, which might serve as a suitable in vitro model for future investigations of NASH-derived HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888677 | PMC |
http://dx.doi.org/10.3390/ijms20225658 | DOI Listing |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFStem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFJACC Heart Fail
September 2025
Université de Lorraine, Inserm, Centre d'Investigations Cliniques Plurithématique 1433, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France.