Structural Insight into the Mechanism of Inhibitor Resistance in CTX-M-199, a CTX-M-64 Variant Carrying the ST Substitution.

ACS Infect Dis

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.

Published: April 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The smart design of β-lactamase inhibitors allowed us to combat extended-spectrum β-lactamase (ESBL)-producing organisms for many years without developing resistance to these inhibitors. However, novel resistant variants have emerged recently, and notable examples are the CTX-M-190 and CTX-M-199 variants, which carried a ST amino acid substitution and exhibited resistance to inhibitors such as sulbactam and tazobactam. Using mass spectrometric and crystallographic approaches, this study depicted the mechanisms of inhibitor resistance. Our data showed that CTX-M-64 (ST) did not cause any conformational change or exert any effect on its ability to hydrolyze β-lactam substrates. However, binding of sulbactam, but not clavulanic acid, to the active site of CTX-M-64 (ST) led to the conformational changes in such active site, which comprised the key residues involved in substrate catalysis, namely, Thr, Lys, Lys, Asn, and Asn. This conformational change weakened the binding of the sulbactam -enamine intermediate (TSL) to the active site and rendered the formation of the inhibitor-enzyme complex, which features a covalent acrylic acid (AKR)-T bond, inefficient, thereby resulting in inhibitor resistance in CTX-M-64 (ST). Understanding the mechanisms of inhibitor resistance provided structural insight for the future development of new inhibitors against inhibitor-resistant β-lactamases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.9b00345DOI Listing

Publication Analysis

Top Keywords

inhibitor resistance
16
active site
12
structural insight
8
resistance inhibitors
8
mechanisms inhibitor
8
conformational change
8
binding sulbactam
8
resistance
6
insight mechanism
4
inhibitor
4

Similar Publications

Discovery of -(thiazol-2-yl) Furanamide Derivatives as Potent Orally Efficacious AR Antagonists with Low BBB Permeability.

J Med Chem

September 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.

View Article and Find Full Text PDF

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.

View Article and Find Full Text PDF

Importance: This study represents a first successful use of a genetic biomarker to select potential responders in a prospective study in psychiatry. Liafensine, a triple reuptake inhibitor, may become a new precision medicine for treatment-resistant depression (TRD), a major unmet medical need.

Objective: To determine whether ANK3-positive patients with TRD benefit from a 1-mg and/or 2-mg daily oral dose of liafensine, compared with placebo, in a clinical trial.

View Article and Find Full Text PDF