98%
921
2 minutes
20
A new bis-heteroleptic Ru complex () with iodotriazole as the anion binding group along with the attached pyrene moiety is developed to investigate anion sensing properties and the origin of its selectivity toward a particular class of anions. Selective sensing of phosphates over other anions in both the solution and solid states by is clearly evident from the perturbation of the absorption band and a large degree of amplification of MLCT emission band in the presence of phosphates. Importantly, macroscopic investigation such as Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) indicated the formation of supramolecular architecture in the presence of dihydrogen phosphate via halogen bonding interaction and π-π stacking of pyrene moieties. Such macroscopic property is further corroborated by solution and solid state spectroscopic studies, e.g., H-DOSY NMR, single crystal X-ray crystallography, and solid state photoluminescence (PL) spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b02483 | DOI Listing |
Anal Chim Acta
November 2025
State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:
Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.
Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.
Anal Chim Acta
November 2025
The Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) - the Portuguese Research Centre for Sustainable Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. Electronic address:
Background: When using semiconductor quantum dots (QDs) for single-analyte sensing, recognition is commonly achieved through interactions with capping ligands attached to the QDs surface. These ligands form an organic layer that provides stability in solution and assures selectivity by binding the target analyte via surface functional groups. However, a common analytical challenge arises in the subsequent stage of the QD-based sensing scheme.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of Ministry of Education, Bao
Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China. Electronic address:
Background: Daminozide is a commonly utilized plant growth regulator. Both daminozide and its hydrolysis product, 1,1-dimethyl hydrazine ((CH)NNH), exhibit carcinogenic and teratogenic toxicity. Accurate detection of daminozide in food is of great significance to human health.
View Article and Find Full Text PDF