Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been rapidly developed and widely used as an analytical technique in clinical laboratories with high accuracy in microorganism identification.

Objective: To validate the efficacy of MALDI-TOF MS in identification of clinical pathogenic anaerobes.

Methods: Twenty-eight studies covering 6685 strains of anaerobic bacteria were included in this meta-analysis. Fixed-effects models based on the P-value and the I-squared were used for meta-analysis to consider the possibility of heterogeneity between studies. Statistical analyses were performed by using STATA 12.0.

Results: The identification accuracy of MALDI-TOF MS was 84% for species (I = 98.0%, P < 0.1), and 92% for genus (I = 96.6%, P < 0.1). Thereinto, the identification accuracy of Bacteroides was the highest at 96% with a 95% CI of 95-97%, followed by Lactobacillus spp., Parabacteroides spp., Clostridium spp., Propionibacterium spp., Prevotella spp., Veillonella spp. and Peptostreptococcus spp., and their correct identification rates were all above 90%, while the accuracy of rare anaerobic bacteria was relatively low. Meanwhile, the overall capabilities of two MALDI-TOF MS systems were different. The identification accuracy rate was 90% for VITEK MS vs. 86% for MALDI biotyper system.

Conclusions: Our research showed that MALDI-TOF-MS was satisfactory in genus identification of clinical pathogenic anaerobic bacteria. However, this method still suffers from different drawbacks in precise identification of rare anaerobe and species levels of common anaerobic bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836477PMC
http://dx.doi.org/10.1186/s12879-019-4584-0DOI Listing

Publication Analysis

Top Keywords

anaerobic bacteria
8
application maldi-tof
4
maldi-tof rapid
4
rapid identification
4
identification anaerobic
4
bacteria background
4
background matrix-assisted
4
matrix-assisted laser
4
laser desorption
4
desorption ionization-time
4

Similar Publications

Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.

View Article and Find Full Text PDF

Background: Actinomyces graevenitzii is a relatively uncommon Actinomyces species, which is an oral species and predominantly recovered from respiratory locations [1,2]. It is a gram-positive anaerobic bacteria or microaerobic filamentation bacteria, which can induce pyogenic and granulomatous inflammation characterized by swelling and concomitant pus, sinus formation, and the formation of yellow sulfur granules. All tissues and organs can be infected; the most common type involves the neck and face (55%), followed by the abdominal and pelvic cavities (20%).

View Article and Find Full Text PDF

Background: Pneumonia with an empyema caused by anaerobic bacteria is rare but can be life-threatening, especially in immunocompromised patients.

Case Presentation: A 67-year-old man with diabetes and hypertension who presented with pneumonia and pleural effusion and was unresponsive to initial broad-spectrum antibiotics is presented. Next-generation sequencing identified Parvimonas micra and other pathogens.

View Article and Find Full Text PDF

The only two commercially available strains of were cultivated and their genomes sequenced. As recurring beer spoiling bacteria, they cause unwanted turbidity and unpleasant odors. Their genomes harbor a number of putative defense mechanisms explaining their much-needed resilience to survive in the brewing environment.

View Article and Find Full Text PDF

Critical roles of rare species in the anaerobic ammonium oxidizing bacterial community in coastal sediments.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Anaerobic ammonium oxidation (anammox) plays a critical role in nitrogen loss in estuarine and marine environments. However, the mechanisms underlying the formation and maintenance of the anammox bacterial community remain unclear. This study analyzed the anammox bacterial diversity, community structure, and interspecific relationships in three estuaries along the Chinese coastline -the Changjiang Estuary (CJE), the Oujiang Estuary (OJE), and the Jiulong River Estuary (JLE) - as well as the South China Sea (SCS) to elucidate their community assembly mechanisms.

View Article and Find Full Text PDF