98%
921
2 minutes
20
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia-associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti-cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201912574 | DOI Listing |
Retin Cases Brief Rep
September 2025
Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California of Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California, United States.
Purpose: To describe a case of recalcitrant bilateral peripapillary pachychoroid syndrome (PPS) treated with high-dose (HD) intravitreal aflibercept injections.
Methods: Medical and imaging records were retrospectively evaluated. Multimodal imaging included ultra-widefield indocyanine green and fluorescein angiography and fundus autofluorescence.
Front Pharmacol
August 2025
School of Pharmacy, Nantong University, Nantong, China.
Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.
Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.
View Article and Find Full Text PDFBiomaterials
August 2025
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:
Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.
View Article and Find Full Text PDF