98%
921
2 minutes
20
Purpose: The present study aims to investigate the role of ELF3-AS1 in oral squamous cell carcinoma (OSCC).
Patients And Methods: A total of 112 patients with OSCC were admitted in Guangdong Provincial Stomatological Hospital from March 2016 to March 2019. RT-qPCR, cells and transient transfections, cell proliferation rate measurements and Western blots were carried out to analyze the samples.
Results: In the present study, we showed that ELF3-AS1 and glucose transporter 1 (GLUT1) were both upregulated in OSCC tissues, and those two factors were positively correlated. In OSCC cells, ELF3-AS1 overexpression resulted in upregulation, while ELF3-AS1 siRNA silencing caused downregulated expression of GLUT1 and glucose uptake. ELF3-AS1 and GLUT1 overexpression resulted in increased rate of OSCC cells, while ELF3-AS1 and GLUT1 siRNA silencing resulted in decreased proliferation rate of OSCC cells. In addition, GLUT1 siRNA silencing attenuated the effects of ELF3-AS1 overexpression.
Conclusion: Therefore, ELF3-AS1 promotes the proliferation of OSCC cells by reprogramming glucose metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709795 | PMC |
http://dx.doi.org/10.2147/OTT.S217473 | DOI Listing |
Int J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Cureus
September 2025
Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, JPN.
Introduction Oral squamous cell carcinoma (OSCC), which is the most common cancer type in head and neck cancers, remains a serious health problem because of its high mortality. Treatment of OSCC is mainly performed with a combination of surgery and anticancer agents. However, despite the recent development of anticancer agents, the clinical outcome of OSCC has yet to be improved.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
Lymph node metastasis (LNM) is a critical prognostic factor for patients with oral squamous cell carcinoma (OSCC). Previous research has implicated the partial epithelial-to-mesenchymal transition of tumor cells and myofibroblastic cancer-associated fibroblasts (myCAFs) in the LNM process. However, the underlying molecular mechanisms remain poorly understood.
View Article and Find Full Text PDFObjective: This study aimed to elucidate the functional role and molecular mechanisms of Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) in oral squamous cell carcinoma (OSCC) through integrative analysis of single-cell RNA sequencing (scRNA-seq) data.
Materials And Methods: Cellular subpopulations within OSCC were stratified using transcriptomic datasets from the GEO database. Cell-cell communication networks were reconstructed to map ligand-receptor interactions, while Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were employed to systematically investigate SPINK1-associated signaling pathways.
Hua Xi Kou Qiang Yi Xue Za Zhi
August 2025
Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou 646000, China.
Objectives: This study aimed to explore the expression of lysosomal-associated membrane protein 5 (LAMP5) and microRNA (miR)-302a-3p in oral squamous cell carcinoma (OSCC) and their functional mechanism on the invasion and metastasis of OSCC.
Methods: The expression of LAMP5 in OSCC and its sensitivity as a prognostic indicator were analyzed on the basis of The Cancer Genome Atlas database. Western blot, quantitative reverse transcription polymerase chain reaction, and cell immunocytochemistry were used to detect the expression of LAMP5 in OSCC tissues and cells.