Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b03485DOI Listing

Publication Analysis

Top Keywords

conversion spin
16
spin currents
12
spin hall
12
spin polarization
12
spin
11
conversion
8
spin-to-charge conversion
8
charge current
8
large multidirectional
4
multidirectional spin-to-charge
4

Similar Publications

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

RuO, the benchmark catalyst for the oxygen evolution reaction (OER), has traditionally been considered Pauli paramagnetic; however, recent findings have demonstrated its antiferromagnetic (AFM) properties, hinting at the opportunity to enhance RuO's OER performance by manipulating its magnetic traits. In this study, we successfully induced weak ferromagnetism in commercial RuO, transitioning it from an AFM state using an electrochemical sodiation method. This process resulted in high activity, achieving an overpotential of 145 mV to reach 10 mA cm and extending the service hours by more than 13 times compared to pristine RuO in 0.

View Article and Find Full Text PDF

Owing to their unique combination of magnetic and optical properties, luminescent polychlorinated radicals are promising candidates for advanced applications in both optoelectronics and quantum technologies. In this study, we employ the lineshape formalism within a computational protocol based on time-dependent density functional theory (TD-DFT) to investigate the excited-state properties of six representative members of this family presenting different sizes and excited-state characters. We explore a wide range of density functionals, applying or not the Tamm-Dancoff approximation (TDA), combined with different vibronic models, namely, the vertical gradient (VG), vertical Hessian (VH), and adiabatic Hessian (AH), as well as dipole moment expansions using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations.

View Article and Find Full Text PDF

The efficient and selective activation of C(sp)-H bonds in toluene plays a pivotal role in the synthesis of value-added chemicals, yet achieving this transformation under mild conditions remains a challenge. Herein, the Au nanoparticles supported on rich-nitrogen vacancies on CN (AuNPs/CN-N) are synthesized via Ar atmosphere calcination and photoinduced deposition. The electronic state and coordination environment of Au species, as well as nitrogen vacancies, are systematically elucidated using X-ray absorption fine structure (XAFS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and in situ Fourier-transform infrared (in situ FT-IR).

View Article and Find Full Text PDF