Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root-knot nematode is an important soil pest in horticulture crops and constrains the protected cultivation development after methyl bromide (MB) was phased out in China. Dimethyl disulfide (DMDS) exhibits excellent efficacy against nematodes. Laboratory experiments and field trials were set up to clarify DMDS dose, efficacy, and yield. A dose-response experiment using three methods showed that DMDS presented high efficacy against the nematode Meloidogyne incongnita. The LC50 values of direct fumigation activity in the dessicator method were 0.086 and 0.070 mg L-1 for DMDS and 1,3-D, 29.865 and 18.851 mg L-1 for DMDS and 1,3-D of direct contact activity in the small tube method, 6.438 and 3.061 mg L-1 for DMDS and 1,3-D of soil fumigation activity in the soil fumigation method, respectively. The field trials indicated that DMDS showed an excellent efficacy of 80%-94% on root-knot nematode applied at 10-100 g m-2 on tomato in Tongzhou, Beijing. The crop yields showed no significant difference after applying 10-80 g m-2 DMDS. Results indicate that DMDS applied at 10 g m-2 for controlling root-knot nematode in Beijing is cost effective. In conclusion, DMDS is an excellent soil fumigant that can be used for controlling root-knot nematode and can be an potential novel alternative to MB in China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816568PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224456PLOS

Publication Analysis

Top Keywords

root-knot nematode
16
l-1 dmds
12
dmds 13-d
12
dmds
11
dimethyl disulfide
8
disulfide dmds
8
soil fumigant
8
excellent efficacy
8
field trials
8
fumigation activity
8

Similar Publications

Plant growth-promoting bacteria as biological control agents for sustainable agriculture: targeting root-knot nematodes.

Front Plant Sci

August 2025

Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

The increasing frequency of extreme weather events affects ecosystems and threatens food production. The reduction of chemical pesticides, together with other ecological approaches, is crucial to more sustainable agriculture. Plant-parasitic nematodes (PPN), especially root-knot nematodes (RKN), spp.

View Article and Find Full Text PDF

First Report of Root-Knot Nematode, , on Tree Houseleek () in the United States.

J Nematol

February 2025

Department of Nematology, University of California, Riverside, 900 University Ave., Riverside, CA 92521.

, or tree houseleek (), is a bushy, perennial succulent and a popular ornamental plant in regions such as California, New Zealand, Australia, Sicily, Gibraltar, and Chile. It features rosettes of soft, waxy leaves at the tips of sparsely branched or occasionally single, bare stems. It is drought-tolerant and has a variety of colors and forms, making it a popular ornamental plant.

View Article and Find Full Text PDF

Fluensulfone is the active ingredient of the non-fumigant nematicide Nimitz. It is much less harmful to the environment and has much improved worker safety compared to broad-spectrum fumigant nematicides. The product is registered for use in a variety of crops, including fruiting vegetables, and is applied to soil 7-14 days before seeding or planting.

View Article and Find Full Text PDF

Understanding the chemotactic crosstalk between rice and root-knot nematodes is essential for developing sustainable pest management strategies. Rice plants release chemicals that can modulate the behavior of the rice root-knot nematode , a major plant-parasitic nematode. In this study, two rice cultivars, Pusa Basmati 1121 (nematode-susceptible) and Kalo Bhutia 213 (highly nematode-resistant), were used to collect metabolites released from rice roots, and their role in influencing rice- interactions was studied.

View Article and Find Full Text PDF

Post-exposure effects of Photorhabdus nematicidal secondary metabolites on the fitness of entomopathogenic nematodes.

J Invertebr Pathol

August 2025

School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA. Electronic address:

Previous studies conducted by our team have shown that three secondary metabolites (SMs) from Photorhabdus luminescens sonorensis, trans-cinnamic acid (TCA), (4E)-5-phenyl-4-pentenoic acid (PPA), and indole, exhibit nematicidal and/or nematistatic activities against root knot and citrus nematodes, with no discernible effects on non-target entomopathogenic nematodes (EPNs). To further explore the post-exposure fitness of EPNs, this study focused on the effects of these SMs on the virulence and reproductive fitness of three EPNs: Heterorhabditis sonorensis (the native host of P. l.

View Article and Find Full Text PDF