Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering.

Nucleic Acids Res

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Application of CRISPR-based technologies in non-model microorganisms is currently very limited. Here, we reported efficient genome engineering of an important industrial microorganism, Zymomonas mobilis, by repurposing the endogenous Type I-F CRISPR-Cas system upon its functional characterization. This toolkit included a series of genome engineering plasmids, each carrying an artificial self-targeting CRISPR and a donor DNA for the recovery of recombinants. Through this toolkit, various genome engineering purposes were efficiently achieved, including knockout of ZMO0038 (100% efficiency), cas2/3 (100%), and a genomic fragment of >10 kb (50%), replacement of cas2/3 with mCherry gene (100%), in situ nucleotide substitution (100%) and His-tagging of ZMO0038 (100%), and multiplex gene deletion (18.75%) upon optimal donor size determination. Additionally, the Type I-F system was further applied for CRISPRi upon Cas2/3 depletion, which has been demonstrated to successfully silence the chromosomally integrated mCherry gene with its fluorescence intensity reduced by up to 88%. Moreover, we demonstrated that genome engineering efficiency could be improved under a restriction-modification (R-M) deficient background, suggesting the perturbance of genome editing by other co-existing DNA targeting modules such as the R-M system. This study might shed light on exploiting and improving CRISPR-Cas systems in other microorganisms for genome editing and metabolic engineering practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868425PMC
http://dx.doi.org/10.1093/nar/gkz940DOI Listing

Publication Analysis

Top Keywords

genome engineering
20
type i-f
12
repurposing endogenous
8
endogenous type
8
i-f crispr-cas
8
crispr-cas system
8
zymomonas mobilis
8
zmo0038 100%
8
mcherry gene
8
genome editing
8

Similar Publications

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.

View Article and Find Full Text PDF

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF

Galectins in Inflammatory Skin Diseases: Mechanisms and Therapeutic Potential.

J Invest Dermatol

September 2025

Department of Dermatology, Keck School of Medicine of University of South California, Los Angeles, California, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. Electronic address:

This review examines the roles of galectins, a family of animal lectins, in inflammatory skin diseases, focusing on their involvement in the pathogenesis of psoriasis, atopic dermatitis, contact dermatitis, and common autoimmune diseases. We highlight the differential expression of galectins in lesional skin and their correlation with inflammatory mediators. In addition, we summarize the functions and mechanisms of action of endogenous galectins, as revealed through studies of genetically engineered cell lines and experimental animals.

View Article and Find Full Text PDF