98%
921
2 minutes
20
Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(-isopropylmethacrylamide) microgels (μGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing μGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of μGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b03688 | DOI Listing |
ACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.
The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:
Solid-liquid triboelectric nanogenerators (SL-TENGs) have attracted attention for use in water resource collection. However, traditional methods limit improvements in the surface energy density of the friction layer because of insufficient precision. This study used femtosecond laser technology to create three-dimensional bionic structures on polyvinylidene fluoride (PVDF) films.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
Institute of Mechanics, Moscow State University, Moscow 119192, Russia.
CO₂ geological utilization and storage involve complex multiphase interfacial behaviors that significantly influence the overall efficiency. Recently, bio-based materials have attracted increasing attention as promising candidates for interfacial regulation owing to their structural diversity, abundance, and environmental compatibility. This review summarizes recent advances in utilizing biomass-derived materials to regulate interfacial behaviors in subsurface multiphase systems.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
Renewable electricity-driven water electrolysis stands at the forefront of clean hydrogen production, playing a crucial role in achieving a net-zero carbon future. Interfacial water is fundamental to this process, dictating reaction kinetics, proton and electron transfer dynamics, and mass transport at the electrode-electrolyte interface. Effective tuning of the structure of interfacial water is imperative for enhancing catalytic activity, efficiency, and long-term stability.
View Article and Find Full Text PDF