Polyploidy remodels fruit metabolism by modifying carbon source utilization and metabolic flux in Ponkan mandarin (Citrus reticulata Blanco).

Plant Sci

Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The phenotypic variations that follow polyploidization are expected to improve agricultural productivity and efficiency [1]. However, the effect of polyploidization on plant metabolism has rarely been studied. This study evaluated the metabolic alterations that followed autotetraploidization in the fruit of Ponkan mandarin (C. reticulata Blanco) for three consecutive years and explored the underlying changes to the transcriptome. The autotetraploid (4x) Ponkan fruit had higher levels of total acids, ascorbic acid and total phenolic compounds than the diploid (2x). The primary metabolites especially the organic acids tended to accumulate at higher levels in the 4x fruit. Conversely, two major groups of secondary metabolites (i.e. flavonoids and carotenoids) tended to accumulate at lower levels. The expression levels of citric acid biosynthesis-related genes were unaltered in 4x fruit compared to the 2x fruit. Additionally, genes associated with the transport and utilization of citric acid were significantly down-regulated during ripening, which might induce increases in the levels of citric acid in the 4x fruit. Lower levels of flavonoids and carotenoids in the 4x fruit are potentially associated with decreases in the transport and utilization of citric acid, which is an important metabolite. Citric acid contributes to respiration by serving as an intermediated in the tricarboxylic acid cycle (TCA) and also provides carbon for the production of secondary metabolites. This study demonstrates that polyploidization can influence metabolism in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2019.110276DOI Listing

Publication Analysis

Top Keywords

citric acid
20
fruit
8
ponkan mandarin
8
reticulata blanco
8
higher levels
8
tended accumulate
8
secondary metabolites
8
flavonoids carotenoids
8
lower levels
8
levels citric
8

Similar Publications

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Evaluation of crosslinked cellulose-based solid and gel polymer electrolytes in lithium-ion batteries.

Int J Biol Macromol

September 2025

Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:

In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.

View Article and Find Full Text PDF

This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.

View Article and Find Full Text PDF

Addressing the Precipitation of Hydrated Carbonates on a Bronze Cannon from the Alamo.

ACS Omega

September 2025

Department of Anthropology, Texas A&M University, College Station, Texas United States.

Following their defeat in the Texas Revolution of 1836, the Mexican Army disabled and buried cannons used in the defense of the Alamo. Rediscovered in 1852, 13 of these cannons have since journeyed through private collections and public exhibits before arriving at the Alamo. Among them is a bronze 4-pounder cannon, thought to have seen action during the battle itself.

View Article and Find Full Text PDF

The low-carbon strategy mandates the sustainable remediation of hexavalent chromium (Cr(VI)) contamination, driving the demand for efficient eco-adsorbents. However, current research prioritizes adsorption performance, neglecting environmental trade-offs and quantum chemical mechanisms of Cr(VI) adsorption. Here, we pioneered the first density functional theory (DFT) exploration of Cr(VI) adsorption mechanisms across chitosan (CS), polydopamine (PDA), UiO-66-NH, and polyethylenimine.

View Article and Find Full Text PDF