98%
921
2 minutes
20
Fusion of differentiated somatic cells with pluripotent stem cells can be used for cellular reprogramming, but the efficiency to obtain hybrid cells is extremely low. Here, we explored a novel cell fusion system, termed single-cell fusion, the efficiency was significantly improved verified by fusion of mouse embryonic stem cells (mESCs), comparing to traditional polyethylene glycol fusion. Then, we employed the optimized system to perform cell fusion of porcine embryonic fibroblasts (PEFs) and porcine pluripotent stem cells (pPSCs) with mESCs. The hybrid cells showed both red and green fluorescence and expressed species-specific genes of mouse and pig to evidence that the fusion was successful. The hybrid cells displayed characteristics similar with mESCs, including colony morphology, alkaline phosphatase positive and formation of embryoid body, and the expressions of core pluripotent factors OCT4, NANOG, and SOX2 of the pig were induced in the mESC/PEF hybrid cells. The results indicate PEFs and pPSCs could be reprogrammed by mESCs via the single-cell fusion. Taking advantage of the hybrid cells to investigate the signaling pathways depended on the pluripotency of pig, we suggest the transforming growth factor-β signaling pathways may play important roles. In summary, the single-cell fusion is highly efficient, and we believe in the future it will be widely used in the application and fundamental research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.29244 | DOI Listing |
Small
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDF