98%
921
2 minutes
20
Injection into the suprachoroidal space (SCS) allows drug delivery targeted to sclera, choroid, and retina. Here, we studied SCS injection formulated with collagenase to expand drug delivery coverage and increase posterior drug targeting within SCS by breaking down collagen fibrils that link sclera and choroid in the SCS. When 1 μm latex microparticles were injected with a collagenase formulation using microneedles into the SCS of rabbit eyes ex vivo and incubated at 37 °C for 4 h, microparticle delivery coverage increased from 20% to 45% and enhanced posterior drug targeting. Collagenase concentration was optimized to 0.5 mg/mL to maximize expanded posterior delivery and minimize tissue damage. Effects of collagenase injection within SCS increased and then plateaued 4 h after injection. Simultaneous injection of collagenase and microparticles had a greater effect on expanded delivery in the SCS compared to sequential injection. Collagenase injection into the SCS of rabbit eyes in vivo was also effective to expand delivery and was generally well-tolerated, showing transiently lowered IOP, but no apparent lasting adverse effects on ocular tissues such as sclera, choroid, and retina, as determined by analyzing histology, sclera tensile strength, and fundus imaging. We conclude that addition of collagenase during SCS injection can expand drug delivery coverage and increase posterior drug targeting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945298 | PMC |
http://dx.doi.org/10.1016/j.exer.2019.107824 | DOI Listing |
Int J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFiScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.