Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis () chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6878006PMC
http://dx.doi.org/10.1104/pp.19.00897DOI Listing

Publication Analysis

Top Keywords

cyanobacterial cell
8
proteins involved
8
proteins
7
proteome mapping
4
mapping cyanobacterium
4
cyanobacterium reveals
4
reveals distinct
4
distinct compartment
4
compartment organization
4
organization cell-dispersed
4

Similar Publications

Cyanobacteria achieve highly efficient photosynthesis using a CO-concentrating mechanism relying on specialized Type I (NDH-1) complexes. Among these, NDH-1 and NDH-1 catalyze redox-coupled hydration of CO to bicarbonate, supporting carbon fixation in carboxysomes. The mechanism of coupling electron transfer to CO-hydration by these variant NDH-1 complexes remains unknown.

View Article and Find Full Text PDF

Butylparaben-Loaded Aged Polystyrene Nanoplastics Amplify Its Toxicity in via Quorum Sensing Suppression and Enhanced Microcystin-LR Release.

Environ Sci Technol

September 2025

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Aged nanoplastics are emerging pollutants in aquatic environments, but the effects of their loaded pollutants on cyanobacteria are still poorly understood. This study evaluated the adsorption of butylparaben (BP) by pristine (PS) and aged polystyrene nanoplastics (APS) and prepared BP-loaded aged PS to analyze their effects on . The results showed that APS had stronger BP adsorption and translocation capacity, with APS increasing BP adsorption by 4.

View Article and Find Full Text PDF

Multichassis Expression of Cyanobacterial and Other Bacterial Biosynthetic Gene Clusters.

ACS Synth Biol

September 2025

Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States.

Heterologous expression of biosynthetic gene clusters (BGCs) is a powerful strategy for natural product (NP) discovery, yet achieving consistent expression across microbial hosts remains challenging. Here, we developed cross-phyla vector systems enabling the expression of BGCs from cyanobacteria and other bacterial origins in Gram-negative , Gram-positive , and two model cyanobacterial strains including unicellular PCC 6803 and filamentous sp. PCC 7120.

View Article and Find Full Text PDF

Cyanobacteria are emerging as a promising platform for whole-cell biotransformation, harnessing solar energy to drive biocatalytic reactions through recombinant enzymes. However, optimisation remains challenging due to the complexity of the cyanobacterial metabolism and the regulatory framework in which heterologous enzymes operate. While many enzymes have been deployed for light-driven whole-cell biotransformations, the different experimental conditions used between studies make direct comparison and systematic improvement difficult.

View Article and Find Full Text PDF

Cyanobacteria are vital photosynthetic prokaryotes, but some form harmful algal blooms (cyanoHABs) that disrupt ecosystems and produce toxins. The mechanisms by which these blooms form have yet to be fully understood, particularly the role of extracellular components. Here, we present a 2.

View Article and Find Full Text PDF