98%
921
2 minutes
20
Silica-based carrier is a promising material for recovery of metal and nonmetal contaminants in chemical oxo-precipitation-fluidized bed crystallization (COP-FBC) system. Boron species are an essential element for plant growth and can cause health concerns in human beings at high concentrations in water environments. The composition of thin-film transistor liquid crystal display (TFT-LCD) contains a wide variety of metal oxides and can be tailored as promising functional mesoporous carriers for boron crystallization recovery in the presence of barium ions and hydrogen peroxide. In this study, waste-derived mesoporous aluminosilicate (MAS) nanomaterial in the presence of barium ions and hydrogen peroxide was used as a carrier for sustainable recovery of crystallized boron, a priority wastewaters pollutant. The MAS shows the hierarchically homogeneous distribution of nanostructured aluminosilicate particles with an average size of 12.8 ± 3.6 nm on the surface after the activation with NaCO at 1000 °C. Moreover, the negatively charged surface and the mesoporous structure of MAS enhance the adsorption of Ba onto MAS, and the Langmuir adsorption capacity of 105 mg/g is achieved, which is conducive to the enhancement of the recovery of boron species. Moreover, the recovery efficiency and crystallization ratio of boron by MAS can be up to 84.5 and 93.4%, respectively. The cross-sectional scanning electron microscopy images and the high-temperature X-ray diffraction results confirm the boron recovery mechanism that the negatively charged functional group as well as the mesoporosity of MAS triggers the rapid formation of needle-shaped precipitates of barium peroxoborate, and then converted to barium borate after calcination at 1050 °C. Results obtained in this study clearly demonstrate the possibility of fabricating environmentally benign mesoporous aluminosilicate adsorbents from TFT-LCD waste to sustainably recover and crystallize boron species from water and wastewater in COP-FBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714614 | PMC |
http://dx.doi.org/10.1021/acsomega.9b01900 | DOI Listing |
Magn Reson Lett
May 2025
National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
Organic structure directing agents (OSDAs), such as tetrapropylammonium (TPA) cations, serve as crucial templates for the formation of zeolite frameworks. These organic molecules interact with inorganic species, guiding the assembly of the zeolite structure. In this study, we investigate the complex interplay between boron species and TPA cations during the crystallization of [B, Al]-ZSM-5 zeolites.
View Article and Find Full Text PDFACS Omega
September 2025
Faculty of Energy and Fuels, AGH University of Krakow, 30 Mickiewicza, PL-30059 Kraków, Poland.
For the first time, we examined the catalytic performance of a NiB/SiO catalyst with 10 wt % NiB in model hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) also together with a competing nitrogen compound, that is, carbazole. The NiB/SiO catalyst (fresh, reduced, and spent) was characterized using the following techniques: N sorption, ICP, XRD, CO chemisorption, XPS, and elemental analysis. The results of XRD, XPS, and elemental analysis indicated the partial decomposition of the NiB phase into metallic nickel (accompanied by boron atoms) and partial sulfidation into NiS species under reaction conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.
Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Advanced Materials for Intelligent Sensing and Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China.
Incorporating boron atoms into organic macrocycles imparts unique chemical, electronic, and optical properties. The concept of making use of dative boron-nitrogen (B ← N) bonds for the construction of macrocycles has been proposed, but very few examples have been prepared with functional structures, much less pillar-like and other prismatic macrocycles, and their various functionalities have not been fully exploited. Here, we introduce a "functional molecular wall" synthetic protocol based on the self-assembly characteristics of B ← N dative bonds to construct highly symmetrical macrocycles, forming a quasi-pentagonal-shaped macrocycle (named [5]pyBN-) with a pillar-like structure.
View Article and Find Full Text PDFInorg Chem
September 2025
Institute of Inorganic Chemistry of Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Czech Republic.
We report the synthesis and reactivity of phenylpyridine-based boron azides readily accessible via nucleophilic substitution from generated borenium-type precursors. Three azides were obtained: a hydridic species (L)BHN (L = 2-phenylpyridine), a cyclopentyl-substituted analogue (L)B(cyclopentyl)N, and a boron diazide (L)B(N) obtained as a byproduct from the synthesis of (L)BHN. The prepared borane azides exhibit notable thermal and photochemical robustness, with decomposition temperatures around 140 °C in mesitylene solution and above 170 °C in the solid state, as evidenced by DSC/TGA analysis.
View Article and Find Full Text PDF