98%
921
2 minutes
20
Acute myeloid leukemia (AML) is a common and aggressive hematological malignancy. Acquisition of heterogeneous genetic aberrations and epigenetic dysregulation lead to the transformation of hematopoietic stem cells (HSC) into leukemic stem cells (LSC), which subsequently gives rise to immature blast cells and a leukemic phenotype. LSCs are responsible for disease relapse as current chemotherapeutic regimens are not able to completely eradicate these cellular sub-populations. Therefore, it is critical to improve upon the existing knowledge of LSC specific markers, which would allow for specific targeting of these cells more effectively allowing for their sustained eradication from the cellular milieu. Although significant milestones in decoding the aberrant transcriptional network of various cancers, including leukemia, have been achieved, studies on the involvement of post-transcriptional gene regulation (PTGR) in disease progression are beginning to unfold. RNA binding proteins (RBPs) are key players in mediating PTGR and they regulate the intracellular fate of individual transcripts, from their biogenesis to RNA metabolism, via interactions with RNA binding domains (RBDs). In this study, we have used an integrative approach to systematically profile RBP expression and identify key regulatory RBPs involved in normal myeloid development and AML. We have analyzed RNA-seq datasets (GSE74246) of HSCs, common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), monocytes, LSCs, and blasts. We observed that normal and leukemic cells can be distinguished on the basis of RBP expression, which is indicative of their ability to define cellular identity, similar to transcription factors. We identified that distinctly co-expressing modules of RBPs and their subclasses were enriched in hematopoietic stem/progenitor (HSPCs) and differentiated monocytes. We detected expression of DZIP3, an E3 ubiquitin ligase, in HSPCs, knockdown of which promotes monocytic differentiation in cell line model. We identified co-expression modules of RBP genes in LSCs and among these, distinct modules of RBP genes with high and low expression. The expression of several AML-specific RBPs were also validated by quantitative polymerase chain reaction. Network analysis identified densely connected hubs of ribosomal RBP genes (rRBPs) with low expression in LSCs, suggesting the dependency of LSCs on altered ribosome dynamics. In conclusion, our systematic analysis elucidates the RBP transcriptomic landscape in normal and malignant myelopoiesis, and highlights the functional consequences that may result from perturbation of RBP gene expression in these cellular landscapes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691814 | PMC |
http://dx.doi.org/10.3389/fonc.2019.00692 | DOI Listing |
Cell Res
September 2025
Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
The pre-dimerization of endosome-localized RNA sensor Toll-like receptor 3 (TLR3) is required for its innate recognition, yet how TLR3 pre-dimers are formed and precisely primed for innate activation remains unclear. Here, we demonstrate that endosome-localized self RNA Rmrp directly binds to TLR3 and induces TLR3 dimerization in the early endosome but does not interact with endosome-localized TLR7, TLR8, TLR9 or cytoplasmic RNA sensor RIG-I under homeostatic conditions. Cryo-EM structure of Rmrp-TLR3 complex reveals a novel lapped conformation of TLR3 dimer engaged by Rmrp, which is distinct from the activation mechanism by dsRNA and the specific structural feature at the 3'-end of Rmrp is critical for its functional interaction with TLR3.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China. Electronic address:
The cerambycid beetles are important components in the terrestrial ecosystem as they play a dual role in both degrading dying trees and killing healthy plants. The factors including human activity, habitat contraction, climate changes and pesticide use have been shaping the adaptation of beetles to host plants and the environment. As suggested in research on the functions of beetles' olfactory proteins, odorant binding proteins (OBPs) have been found to be involved in insecticide resistance other than chemoreception.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 211800, PR China. Electronic address:
The insect ionotropic γ-aminobutyric acid (GABA) receptor is an important insecticide target, and alternative splicing (AS) among exons 3a, 3b, 6a, and 6b of its RDL subunit is ubiquitous in insects; however, the AS factors and mechanisms remain unclear. While the neuro-oncological ventral antigen (Nova) is known to regulate AS of the γ2 subunit of mammalian GABA receptors, its role in insects remains unexplored. Two CsNova isoforms, CsNova-X1 and CsNova-X3, were identified by BLAST in the third-generation transcriptome of Chilo suppressalis.
View Article and Find Full Text PDFJ Autoimmun
September 2025
Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Cellular Genomics Futures Institute & School of Biomedical Sciences, UNSW Sydney, Australia. Electronic address:
Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.
Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.
Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.